ANN Ensembles vs DSP for Mobile Object Detection and Filtering

This paper presents a comparative study between digital signal processing (DSP) systems and artificial neural networks (ANNpsilas) for object motion detection and object extraction and image filtering. The ANNpsilas are arranged as an ensemble to perform the motion detection and image subtraction fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moorgas, K.E., Govender, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue
container_start_page 252
container_title
container_volume
creator Moorgas, K.E.
Govender, P.
description This paper presents a comparative study between digital signal processing (DSP) systems and artificial neural networks (ANNpsilas) for object motion detection and object extraction and image filtering. The ANNpsilas are arranged as an ensemble to perform the motion detection and image subtraction function. ANN's are also used for rejecting any noise contained within the image. The ANN system displays a superior performance over the DSP in terms of system complexity and image quality.
doi_str_mv 10.1109/WCECS.2008.38
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5233165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5233165</ieee_id><sourcerecordid>5233165</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3a3a908a304890b2588563b49410116a55dd74fdfb6533fc96d24f3e1aaca5763</originalsourceid><addsrcrecordid>eNotjM1KxDAYRQMyoI5dunKTF2hN8vXLz0YYOj8K44wwisshaRPJ0GmlKYJvb0XP5iwu5xJyy1nBOTP379WqOhSCMV2AviCZUZopaRBwYkaufxdTCqHMJclSOrEJRMOYuiIPi92Orrrkz671iX4lujy80NAP9Ll3sfV0706-HunSj5Ni31HbNXQd29EPsfu4IbNg2-Szf8_J23r1Wj3m2_3mqVps88gVjjlYsIZpC6zUhjmBWqMEV5qSM86lRWwaVYYmOIkAoTayEWUAz62tLSoJc3L39xu998fPIZ7t8H1EAcCn4gcU00ba</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ANN Ensembles vs DSP for Mobile Object Detection and Filtering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Moorgas, K.E. ; Govender, P.</creator><creatorcontrib>Moorgas, K.E. ; Govender, P.</creatorcontrib><description>This paper presents a comparative study between digital signal processing (DSP) systems and artificial neural networks (ANNpsilas) for object motion detection and object extraction and image filtering. The ANNpsilas are arranged as an ensemble to perform the motion detection and image subtraction function. ANN's are also used for rejecting any noise contained within the image. The ANN system displays a superior performance over the DSP in terms of system complexity and image quality.</description><identifier>ISBN: 9780769535555</identifier><identifier>ISBN: 9781424435456</identifier><identifier>ISBN: 1424435455</identifier><identifier>ISBN: 0769535550</identifier><identifier>DOI: 10.1109/WCECS.2008.38</identifier><identifier>LCCN: 2008942279</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Data mining ; Digital filters ; Digital signal processing ; Discrete Fourier transforms ; ensembles ; Filtering ; Frequency ; Intelligent systems ; Motion detection ; Object detection</subject><ispartof>Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, 2008, p.252-257</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5233165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5233165$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moorgas, K.E.</creatorcontrib><creatorcontrib>Govender, P.</creatorcontrib><title>ANN Ensembles vs DSP for Mobile Object Detection and Filtering</title><title>Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008</title><addtitle>WCECS</addtitle><description>This paper presents a comparative study between digital signal processing (DSP) systems and artificial neural networks (ANNpsilas) for object motion detection and object extraction and image filtering. The ANNpsilas are arranged as an ensemble to perform the motion detection and image subtraction function. ANN's are also used for rejecting any noise contained within the image. The ANN system displays a superior performance over the DSP in terms of system complexity and image quality.</description><subject>Artificial neural networks</subject><subject>Data mining</subject><subject>Digital filters</subject><subject>Digital signal processing</subject><subject>Discrete Fourier transforms</subject><subject>ensembles</subject><subject>Filtering</subject><subject>Frequency</subject><subject>Intelligent systems</subject><subject>Motion detection</subject><subject>Object detection</subject><isbn>9780769535555</isbn><isbn>9781424435456</isbn><isbn>1424435455</isbn><isbn>0769535550</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1KxDAYRQMyoI5dunKTF2hN8vXLz0YYOj8K44wwisshaRPJ0GmlKYJvb0XP5iwu5xJyy1nBOTP379WqOhSCMV2AviCZUZopaRBwYkaufxdTCqHMJclSOrEJRMOYuiIPi92Orrrkz671iX4lujy80NAP9Ll3sfV0706-HunSj5Ni31HbNXQd29EPsfu4IbNg2-Szf8_J23r1Wj3m2_3mqVps88gVjjlYsIZpC6zUhjmBWqMEV5qSM86lRWwaVYYmOIkAoTayEWUAz62tLSoJc3L39xu998fPIZ7t8H1EAcCn4gcU00ba</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Moorgas, K.E.</creator><creator>Govender, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>ANN Ensembles vs DSP for Mobile Object Detection and Filtering</title><author>Moorgas, K.E. ; Govender, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3a3a908a304890b2588563b49410116a55dd74fdfb6533fc96d24f3e1aaca5763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Data mining</topic><topic>Digital filters</topic><topic>Digital signal processing</topic><topic>Discrete Fourier transforms</topic><topic>ensembles</topic><topic>Filtering</topic><topic>Frequency</topic><topic>Intelligent systems</topic><topic>Motion detection</topic><topic>Object detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Moorgas, K.E.</creatorcontrib><creatorcontrib>Govender, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moorgas, K.E.</au><au>Govender, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ANN Ensembles vs DSP for Mobile Object Detection and Filtering</atitle><btitle>Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008</btitle><stitle>WCECS</stitle><date>2008-10</date><risdate>2008</risdate><spage>252</spage><epage>257</epage><pages>252-257</pages><isbn>9780769535555</isbn><isbn>9781424435456</isbn><isbn>1424435455</isbn><isbn>0769535550</isbn><abstract>This paper presents a comparative study between digital signal processing (DSP) systems and artificial neural networks (ANNpsilas) for object motion detection and object extraction and image filtering. The ANNpsilas are arranged as an ensemble to perform the motion detection and image subtraction function. ANN's are also used for rejecting any noise contained within the image. The ANN system displays a superior performance over the DSP in terms of system complexity and image quality.</abstract><pub>IEEE</pub><doi>10.1109/WCECS.2008.38</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769535555
ispartof Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, 2008, p.252-257
issn
language eng
recordid cdi_ieee_primary_5233165
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Data mining
Digital filters
Digital signal processing
Discrete Fourier transforms
ensembles
Filtering
Frequency
Intelligent systems
Motion detection
Object detection
title ANN Ensembles vs DSP for Mobile Object Detection and Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ANN%20Ensembles%20vs%20DSP%20for%20Mobile%20Object%20Detection%20and%20Filtering&rft.btitle=Advances%20in%20Electrical%20and%20Electronics%20Engineering%20-%20IAENG%20Special%20Edition%20of%20the%20World%20Congress%20on%20Engineering%20and%20Computer%20Science%202008&rft.au=Moorgas,%20K.E.&rft.date=2008-10&rft.spage=252&rft.epage=257&rft.pages=252-257&rft.isbn=9780769535555&rft.isbn_list=9781424435456&rft.isbn_list=1424435455&rft.isbn_list=0769535550&rft_id=info:doi/10.1109/WCECS.2008.38&rft_dat=%3Cieee_6IE%3E5233165%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5233165&rfr_iscdi=true