ANN Ensembles vs DSP for Mobile Object Detection and Filtering
This paper presents a comparative study between digital signal processing (DSP) systems and artificial neural networks (ANNpsilas) for object motion detection and object extraction and image filtering. The ANNpsilas are arranged as an ensemble to perform the motion detection and image subtraction fu...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | |
container_start_page | 252 |
container_title | |
container_volume | |
creator | Moorgas, K.E. Govender, P. |
description | This paper presents a comparative study between digital signal processing (DSP) systems and artificial neural networks (ANNpsilas) for object motion detection and object extraction and image filtering. The ANNpsilas are arranged as an ensemble to perform the motion detection and image subtraction function. ANN's are also used for rejecting any noise contained within the image. The ANN system displays a superior performance over the DSP in terms of system complexity and image quality. |
doi_str_mv | 10.1109/WCECS.2008.38 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5233165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5233165</ieee_id><sourcerecordid>5233165</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3a3a908a304890b2588563b49410116a55dd74fdfb6533fc96d24f3e1aaca5763</originalsourceid><addsrcrecordid>eNotjM1KxDAYRQMyoI5dunKTF2hN8vXLz0YYOj8K44wwisshaRPJ0GmlKYJvb0XP5iwu5xJyy1nBOTP379WqOhSCMV2AviCZUZopaRBwYkaufxdTCqHMJclSOrEJRMOYuiIPi92Orrrkz671iX4lujy80NAP9Ll3sfV0706-HunSj5Ni31HbNXQd29EPsfu4IbNg2-Szf8_J23r1Wj3m2_3mqVps88gVjjlYsIZpC6zUhjmBWqMEV5qSM86lRWwaVYYmOIkAoTayEWUAz62tLSoJc3L39xu998fPIZ7t8H1EAcCn4gcU00ba</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ANN Ensembles vs DSP for Mobile Object Detection and Filtering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Moorgas, K.E. ; Govender, P.</creator><creatorcontrib>Moorgas, K.E. ; Govender, P.</creatorcontrib><description>This paper presents a comparative study between digital signal processing (DSP) systems and artificial neural networks (ANNpsilas) for object motion detection and object extraction and image filtering. The ANNpsilas are arranged as an ensemble to perform the motion detection and image subtraction function. ANN's are also used for rejecting any noise contained within the image. The ANN system displays a superior performance over the DSP in terms of system complexity and image quality.</description><identifier>ISBN: 9780769535555</identifier><identifier>ISBN: 9781424435456</identifier><identifier>ISBN: 1424435455</identifier><identifier>ISBN: 0769535550</identifier><identifier>DOI: 10.1109/WCECS.2008.38</identifier><identifier>LCCN: 2008942279</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Data mining ; Digital filters ; Digital signal processing ; Discrete Fourier transforms ; ensembles ; Filtering ; Frequency ; Intelligent systems ; Motion detection ; Object detection</subject><ispartof>Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, 2008, p.252-257</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5233165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5233165$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moorgas, K.E.</creatorcontrib><creatorcontrib>Govender, P.</creatorcontrib><title>ANN Ensembles vs DSP for Mobile Object Detection and Filtering</title><title>Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008</title><addtitle>WCECS</addtitle><description>This paper presents a comparative study between digital signal processing (DSP) systems and artificial neural networks (ANNpsilas) for object motion detection and object extraction and image filtering. The ANNpsilas are arranged as an ensemble to perform the motion detection and image subtraction function. ANN's are also used for rejecting any noise contained within the image. The ANN system displays a superior performance over the DSP in terms of system complexity and image quality.</description><subject>Artificial neural networks</subject><subject>Data mining</subject><subject>Digital filters</subject><subject>Digital signal processing</subject><subject>Discrete Fourier transforms</subject><subject>ensembles</subject><subject>Filtering</subject><subject>Frequency</subject><subject>Intelligent systems</subject><subject>Motion detection</subject><subject>Object detection</subject><isbn>9780769535555</isbn><isbn>9781424435456</isbn><isbn>1424435455</isbn><isbn>0769535550</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1KxDAYRQMyoI5dunKTF2hN8vXLz0YYOj8K44wwisshaRPJ0GmlKYJvb0XP5iwu5xJyy1nBOTP379WqOhSCMV2AviCZUZopaRBwYkaufxdTCqHMJclSOrEJRMOYuiIPi92Orrrkz671iX4lujy80NAP9Ll3sfV0706-HunSj5Ni31HbNXQd29EPsfu4IbNg2-Szf8_J23r1Wj3m2_3mqVps88gVjjlYsIZpC6zUhjmBWqMEV5qSM86lRWwaVYYmOIkAoTayEWUAz62tLSoJc3L39xu998fPIZ7t8H1EAcCn4gcU00ba</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Moorgas, K.E.</creator><creator>Govender, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200810</creationdate><title>ANN Ensembles vs DSP for Mobile Object Detection and Filtering</title><author>Moorgas, K.E. ; Govender, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3a3a908a304890b2588563b49410116a55dd74fdfb6533fc96d24f3e1aaca5763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Data mining</topic><topic>Digital filters</topic><topic>Digital signal processing</topic><topic>Discrete Fourier transforms</topic><topic>ensembles</topic><topic>Filtering</topic><topic>Frequency</topic><topic>Intelligent systems</topic><topic>Motion detection</topic><topic>Object detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Moorgas, K.E.</creatorcontrib><creatorcontrib>Govender, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moorgas, K.E.</au><au>Govender, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ANN Ensembles vs DSP for Mobile Object Detection and Filtering</atitle><btitle>Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008</btitle><stitle>WCECS</stitle><date>2008-10</date><risdate>2008</risdate><spage>252</spage><epage>257</epage><pages>252-257</pages><isbn>9780769535555</isbn><isbn>9781424435456</isbn><isbn>1424435455</isbn><isbn>0769535550</isbn><abstract>This paper presents a comparative study between digital signal processing (DSP) systems and artificial neural networks (ANNpsilas) for object motion detection and object extraction and image filtering. The ANNpsilas are arranged as an ensemble to perform the motion detection and image subtraction function. ANN's are also used for rejecting any noise contained within the image. The ANN system displays a superior performance over the DSP in terms of system complexity and image quality.</abstract><pub>IEEE</pub><doi>10.1109/WCECS.2008.38</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769535555 |
ispartof | Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, 2008, p.252-257 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5233165 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Data mining Digital filters Digital signal processing Discrete Fourier transforms ensembles Filtering Frequency Intelligent systems Motion detection Object detection |
title | ANN Ensembles vs DSP for Mobile Object Detection and Filtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ANN%20Ensembles%20vs%20DSP%20for%20Mobile%20Object%20Detection%20and%20Filtering&rft.btitle=Advances%20in%20Electrical%20and%20Electronics%20Engineering%20-%20IAENG%20Special%20Edition%20of%20the%20World%20Congress%20on%20Engineering%20and%20Computer%20Science%202008&rft.au=Moorgas,%20K.E.&rft.date=2008-10&rft.spage=252&rft.epage=257&rft.pages=252-257&rft.isbn=9780769535555&rft.isbn_list=9781424435456&rft.isbn_list=1424435455&rft.isbn_list=0769535550&rft_id=info:doi/10.1109/WCECS.2008.38&rft_dat=%3Cieee_6IE%3E5233165%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5233165&rfr_iscdi=true |