Financial Prediction Using Manifold Wavelet Kernel

This paper constructs an admissible manifold wavelet kernel (MWK) for support vector machine (SVM) to forecast the volatility of financial time series based on generalized autoregressive conditional heteroscedasticity (GARCH) model. The MWK is obtained by incorporating the wavelet technique and mani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ling-Bing Tang, HuanYe Sheng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue
container_start_page 63
container_title
container_volume
creator Ling-Bing Tang
HuanYe Sheng
description This paper constructs an admissible manifold wavelet kernel (MWK) for support vector machine (SVM) to forecast the volatility of financial time series based on generalized autoregressive conditional heteroscedasticity (GARCH) model. The MWK is obtained by incorporating the wavelet technique and manifold theory into SVM. Unlike Gaussian kernel in SVM, the MWK can approximate arbitrary nonlinear functions. The applicability and validity of MWK for volatility forecast are confirmed through experiments on simulated data sets.
doi_str_mv 10.1109/WMWA.2009.77
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5232468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5232468</ieee_id><sourcerecordid>5232468</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ec66b3f68e23884a547f0fa828b8ee19475acf5462c830524a1758db4ef5481a3</originalsourceid><addsrcrecordid>eNotjU1Lw0AURQekoNbs3LnJH0h98_1mWYrVYosuLFmWl-SNjMSpJEHw39uiqwv3cM8V4lbCQkoI9_WuXi4UQFh4fyGK4BG8C1Y742Amrs8kgEY0l6IYxw8AkMF568yVUOuUKbeJ-vJ14C61Uzrmcj-m_F7uKKd47Luypm_ueSqfecjc34hZpH7k4j_nYr9-eFs9VduXx81qua2S9HaquHWu0dEhq_M1WeMjREKFDTLLYLylNlrjVIsarDJ0mmHXGD6VKEnPxd2fNzHz4WtInzT8HKzSyjjUvwHtQ7k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Financial Prediction Using Manifold Wavelet Kernel</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ling-Bing Tang ; HuanYe Sheng</creator><creatorcontrib>Ling-Bing Tang ; HuanYe Sheng</creatorcontrib><description>This paper constructs an admissible manifold wavelet kernel (MWK) for support vector machine (SVM) to forecast the volatility of financial time series based on generalized autoregressive conditional heteroscedasticity (GARCH) model. The MWK is obtained by incorporating the wavelet technique and manifold theory into SVM. Unlike Gaussian kernel in SVM, the MWK can approximate arbitrary nonlinear functions. The applicability and validity of MWK for volatility forecast are confirmed through experiments on simulated data sets.</description><identifier>ISBN: 9780769536460</identifier><identifier>ISBN: 0769536468</identifier><identifier>DOI: 10.1109/WMWA.2009.77</identifier><identifier>LCCN: 2009903884</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Computer science ; Educational institutions ; GARCH forecast ; Kernel ; Manifolds ; MWK ; Polynomials ; Predictive models ; Risk management ; Support vector machine classification ; Support vector machines</subject><ispartof>2009 Second Pacific-Asia Conference on Web Mining and Web-based Application, 2009, p.63-65</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5232468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5232468$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ling-Bing Tang</creatorcontrib><creatorcontrib>HuanYe Sheng</creatorcontrib><title>Financial Prediction Using Manifold Wavelet Kernel</title><title>2009 Second Pacific-Asia Conference on Web Mining and Web-based Application</title><addtitle>WMWA</addtitle><description>This paper constructs an admissible manifold wavelet kernel (MWK) for support vector machine (SVM) to forecast the volatility of financial time series based on generalized autoregressive conditional heteroscedasticity (GARCH) model. The MWK is obtained by incorporating the wavelet technique and manifold theory into SVM. Unlike Gaussian kernel in SVM, the MWK can approximate arbitrary nonlinear functions. The applicability and validity of MWK for volatility forecast are confirmed through experiments on simulated data sets.</description><subject>Computational modeling</subject><subject>Computer science</subject><subject>Educational institutions</subject><subject>GARCH forecast</subject><subject>Kernel</subject><subject>Manifolds</subject><subject>MWK</subject><subject>Polynomials</subject><subject>Predictive models</subject><subject>Risk management</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><isbn>9780769536460</isbn><isbn>0769536468</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjU1Lw0AURQekoNbs3LnJH0h98_1mWYrVYosuLFmWl-SNjMSpJEHw39uiqwv3cM8V4lbCQkoI9_WuXi4UQFh4fyGK4BG8C1Y742Amrs8kgEY0l6IYxw8AkMF568yVUOuUKbeJ-vJ14C61Uzrmcj-m_F7uKKd47Luypm_ueSqfecjc34hZpH7k4j_nYr9-eFs9VduXx81qua2S9HaquHWu0dEhq_M1WeMjREKFDTLLYLylNlrjVIsarDJ0mmHXGD6VKEnPxd2fNzHz4WtInzT8HKzSyjjUvwHtQ7k</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Ling-Bing Tang</creator><creator>HuanYe Sheng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Financial Prediction Using Manifold Wavelet Kernel</title><author>Ling-Bing Tang ; HuanYe Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ec66b3f68e23884a547f0fa828b8ee19475acf5462c830524a1758db4ef5481a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational modeling</topic><topic>Computer science</topic><topic>Educational institutions</topic><topic>GARCH forecast</topic><topic>Kernel</topic><topic>Manifolds</topic><topic>MWK</topic><topic>Polynomials</topic><topic>Predictive models</topic><topic>Risk management</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Ling-Bing Tang</creatorcontrib><creatorcontrib>HuanYe Sheng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ling-Bing Tang</au><au>HuanYe Sheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Financial Prediction Using Manifold Wavelet Kernel</atitle><btitle>2009 Second Pacific-Asia Conference on Web Mining and Web-based Application</btitle><stitle>WMWA</stitle><date>2009-06</date><risdate>2009</risdate><spage>63</spage><epage>65</epage><pages>63-65</pages><isbn>9780769536460</isbn><isbn>0769536468</isbn><abstract>This paper constructs an admissible manifold wavelet kernel (MWK) for support vector machine (SVM) to forecast the volatility of financial time series based on generalized autoregressive conditional heteroscedasticity (GARCH) model. The MWK is obtained by incorporating the wavelet technique and manifold theory into SVM. Unlike Gaussian kernel in SVM, the MWK can approximate arbitrary nonlinear functions. The applicability and validity of MWK for volatility forecast are confirmed through experiments on simulated data sets.</abstract><pub>IEEE</pub><doi>10.1109/WMWA.2009.77</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769536460
ispartof 2009 Second Pacific-Asia Conference on Web Mining and Web-based Application, 2009, p.63-65
issn
language eng
recordid cdi_ieee_primary_5232468
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Computer science
Educational institutions
GARCH forecast
Kernel
Manifolds
MWK
Polynomials
Predictive models
Risk management
Support vector machine classification
Support vector machines
title Financial Prediction Using Manifold Wavelet Kernel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Financial%20Prediction%20Using%20Manifold%20Wavelet%20Kernel&rft.btitle=2009%20Second%20Pacific-Asia%20Conference%20on%20Web%20Mining%20and%20Web-based%20Application&rft.au=Ling-Bing%20Tang&rft.date=2009-06&rft.spage=63&rft.epage=65&rft.pages=63-65&rft.isbn=9780769536460&rft.isbn_list=0769536468&rft_id=info:doi/10.1109/WMWA.2009.77&rft_dat=%3Cieee_6IE%3E5232468%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5232468&rfr_iscdi=true