Research on Radar Emitters Classification with Fuzzy Support Vector Machines

In this paper, a novel method based on kernel principle component analysis is proposed to extract features of radar emitter signals image of Choi-Williams distribution. Then these discriminative and low dimensional features obtained were fed to the classifier designed for different radar LFM signals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Meng Yafeng, Ren Mingqiu, Cai Jinyan, Han Chunhui
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue
container_start_page 161
container_title
container_volume 1
creator Meng Yafeng
Ren Mingqiu
Cai Jinyan
Han Chunhui
description In this paper, a novel method based on kernel principle component analysis is proposed to extract features of radar emitter signals image of Choi-Williams distribution. Then these discriminative and low dimensional features obtained were fed to the classifier designed for different radar LFM signals which is based on fuzzy support vector machines (FSVMs). In simulation experiments, the classifier attains over 90% overall average correct classification rate. Experimental results show that the proposed FSVM classifier is efficient for different complex radar signals detection and classification.
doi_str_mv 10.1109/IFITA.2009.560
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5231552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5231552</ieee_id><sourcerecordid>5231552</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f00f8a726d66c84ce4826899eb75e2102f7c2df2c4d48e4b144cf73d886cebc43</originalsourceid><addsrcrecordid>eNotjM1KAzEYRQNSUGu3btzkBTp-yeR3WYaOFkaEWt2WNPOFRvpHkiLt0zugd3HO4sAl5JFBxRjY50W7WM0qDmArqeCGTKw2oJWVtQLgI3I_JGMZs0bdkknO3zBMSiM43JFuiRld8lt6PNCl612i830sBVOmzc7lHEP0rsSh_sSype35er3Qj_PpdEyFfqEvx0TfnN_GA-YHMgpul3Hy7zH5bOer5nXavb8smlk3jUzLMg0AwTjNVa-UN8KjMFwZa3GjJXIGPGjP-8C96IVBsWFC-KDr3hjlceNFPSZPf78REdenFPcuXdaS10wO-AVmpk6T</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research on Radar Emitters Classification with Fuzzy Support Vector Machines</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Meng Yafeng ; Ren Mingqiu ; Cai Jinyan ; Han Chunhui</creator><creatorcontrib>Meng Yafeng ; Ren Mingqiu ; Cai Jinyan ; Han Chunhui</creatorcontrib><description>In this paper, a novel method based on kernel principle component analysis is proposed to extract features of radar emitter signals image of Choi-Williams distribution. Then these discriminative and low dimensional features obtained were fed to the classifier designed for different radar LFM signals which is based on fuzzy support vector machines (FSVMs). In simulation experiments, the classifier attains over 90% overall average correct classification rate. Experimental results show that the proposed FSVM classifier is efficient for different complex radar signals detection and classification.</description><identifier>ISBN: 9780769536002</identifier><identifier>ISBN: 076953600X</identifier><identifier>DOI: 10.1109/IFITA.2009.560</identifier><identifier>LCCN: 2008911986</identifier><language>eng</language><publisher>IEEE</publisher><subject>classification ; Feature extraction ; FSVM ; Image analysis ; Information technology ; Kernel ; Radar applications ; Radar detection ; Radar imaging ; radar signal ; Support vector machine classification ; Support vector machines ; Time frequency analysis ; time-frequency transforms</subject><ispartof>2009 International Forum on Information Technology and Applications, 2009, Vol.1, p.161-164</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5231552$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5231552$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meng Yafeng</creatorcontrib><creatorcontrib>Ren Mingqiu</creatorcontrib><creatorcontrib>Cai Jinyan</creatorcontrib><creatorcontrib>Han Chunhui</creatorcontrib><title>Research on Radar Emitters Classification with Fuzzy Support Vector Machines</title><title>2009 International Forum on Information Technology and Applications</title><addtitle>IFITA</addtitle><description>In this paper, a novel method based on kernel principle component analysis is proposed to extract features of radar emitter signals image of Choi-Williams distribution. Then these discriminative and low dimensional features obtained were fed to the classifier designed for different radar LFM signals which is based on fuzzy support vector machines (FSVMs). In simulation experiments, the classifier attains over 90% overall average correct classification rate. Experimental results show that the proposed FSVM classifier is efficient for different complex radar signals detection and classification.</description><subject>classification</subject><subject>Feature extraction</subject><subject>FSVM</subject><subject>Image analysis</subject><subject>Information technology</subject><subject>Kernel</subject><subject>Radar applications</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>radar signal</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Time frequency analysis</subject><subject>time-frequency transforms</subject><isbn>9780769536002</isbn><isbn>076953600X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1KAzEYRQNSUGu3btzkBTp-yeR3WYaOFkaEWt2WNPOFRvpHkiLt0zugd3HO4sAl5JFBxRjY50W7WM0qDmArqeCGTKw2oJWVtQLgI3I_JGMZs0bdkknO3zBMSiM43JFuiRld8lt6PNCl612i830sBVOmzc7lHEP0rsSh_sSype35er3Qj_PpdEyFfqEvx0TfnN_GA-YHMgpul3Hy7zH5bOer5nXavb8smlk3jUzLMg0AwTjNVa-UN8KjMFwZa3GjJXIGPGjP-8C96IVBsWFC-KDr3hjlceNFPSZPf78REdenFPcuXdaS10wO-AVmpk6T</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Meng Yafeng</creator><creator>Ren Mingqiu</creator><creator>Cai Jinyan</creator><creator>Han Chunhui</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>Research on Radar Emitters Classification with Fuzzy Support Vector Machines</title><author>Meng Yafeng ; Ren Mingqiu ; Cai Jinyan ; Han Chunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f00f8a726d66c84ce4826899eb75e2102f7c2df2c4d48e4b144cf73d886cebc43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>classification</topic><topic>Feature extraction</topic><topic>FSVM</topic><topic>Image analysis</topic><topic>Information technology</topic><topic>Kernel</topic><topic>Radar applications</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>radar signal</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Time frequency analysis</topic><topic>time-frequency transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Meng Yafeng</creatorcontrib><creatorcontrib>Ren Mingqiu</creatorcontrib><creatorcontrib>Cai Jinyan</creatorcontrib><creatorcontrib>Han Chunhui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meng Yafeng</au><au>Ren Mingqiu</au><au>Cai Jinyan</au><au>Han Chunhui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research on Radar Emitters Classification with Fuzzy Support Vector Machines</atitle><btitle>2009 International Forum on Information Technology and Applications</btitle><stitle>IFITA</stitle><date>2009-05</date><risdate>2009</risdate><volume>1</volume><spage>161</spage><epage>164</epage><pages>161-164</pages><isbn>9780769536002</isbn><isbn>076953600X</isbn><abstract>In this paper, a novel method based on kernel principle component analysis is proposed to extract features of radar emitter signals image of Choi-Williams distribution. Then these discriminative and low dimensional features obtained were fed to the classifier designed for different radar LFM signals which is based on fuzzy support vector machines (FSVMs). In simulation experiments, the classifier attains over 90% overall average correct classification rate. Experimental results show that the proposed FSVM classifier is efficient for different complex radar signals detection and classification.</abstract><pub>IEEE</pub><doi>10.1109/IFITA.2009.560</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769536002
ispartof 2009 International Forum on Information Technology and Applications, 2009, Vol.1, p.161-164
issn
language eng
recordid cdi_ieee_primary_5231552
source IEEE Electronic Library (IEL) Conference Proceedings
subjects classification
Feature extraction
FSVM
Image analysis
Information technology
Kernel
Radar applications
Radar detection
Radar imaging
radar signal
Support vector machine classification
Support vector machines
Time frequency analysis
time-frequency transforms
title Research on Radar Emitters Classification with Fuzzy Support Vector Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20on%20Radar%20Emitters%20Classification%20with%20Fuzzy%20Support%20Vector%20Machines&rft.btitle=2009%20International%20Forum%20on%20Information%20Technology%20and%20Applications&rft.au=Meng%20Yafeng&rft.date=2009-05&rft.volume=1&rft.spage=161&rft.epage=164&rft.pages=161-164&rft.isbn=9780769536002&rft.isbn_list=076953600X&rft_id=info:doi/10.1109/IFITA.2009.560&rft_dat=%3Cieee_6IE%3E5231552%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5231552&rfr_iscdi=true