A similarity-based approach for ontology mapping
Ontology mapping is the key point to reach interoperability over ontologies. In semantic Web environment, ontologies are usually distributed and heterogeneous and thus it is necessary to find the mapping between them. Aiming at ontology mapping between different ontologies, a new synthesized algorit...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 169 |
---|---|
container_issue | |
container_start_page | 165 |
container_title | |
container_volume | |
creator | Wu Ya-Juan Lang Ji-Sheng Shang Fu-Hua |
description | Ontology mapping is the key point to reach interoperability over ontologies. In semantic Web environment, ontologies are usually distributed and heterogeneous and thus it is necessary to find the mapping between them. Aiming at ontology mapping between different ontologies, a new synthesized algorithm of concept similarity is proposed in this paper. An advanced measure of setting candidate mapping set is applied to reduce the runtime of the account. The presented algorithm involves concept name, attribute, structure and instance levels. To deal with the problem of name conflict in mapping process, we use thesaurus and statistical technique. Experimental results indicate that the proposed method can significantly outperform the baseline methods, and also obtains improvement over the existing methods. |
doi_str_mv | 10.1109/ICCSE.2009.5228502 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5228502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5228502</ieee_id><sourcerecordid>5228502</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-803966f5fc9772764196a1d056fa7635bcaa046b08da2a54a59a74715cbecefa3</originalsourceid><addsrcrecordid>eNo1T8FqwzAU8xiFrV1-YLvkB5I9O352fCyhWwuFHbbBbuXFsTuPpAlxLvn7BdbpIiQkgRh75JBzDub5UFXvu1wAmByFKBHEDUuMLrkUUhYoONyy9b-ArxVbL9nS8KUMdyyJ8QcWSBRGqHsG2zSGLrQ0hmnOaoquSWkYxp7sd-r7Me0vU9_25zntFjtczg9s5amNLrnyhn2-7D6qfXZ8ez1U22MWuMYpK6EwSnn01mgttJLcKOINoPKkVYG1JQKpaigbEoSS0JCWmqOtnXWeig17-tsNzrnTMIaOxvl0fVz8AtJHRtM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A similarity-based approach for ontology mapping</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wu Ya-Juan ; Lang Ji-Sheng ; Shang Fu-Hua</creator><creatorcontrib>Wu Ya-Juan ; Lang Ji-Sheng ; Shang Fu-Hua</creatorcontrib><description>Ontology mapping is the key point to reach interoperability over ontologies. In semantic Web environment, ontologies are usually distributed and heterogeneous and thus it is necessary to find the mapping between them. Aiming at ontology mapping between different ontologies, a new synthesized algorithm of concept similarity is proposed in this paper. An advanced measure of setting candidate mapping set is applied to reduce the runtime of the account. The presented algorithm involves concept name, attribute, structure and instance levels. To deal with the problem of name conflict in mapping process, we use thesaurus and statistical technique. Experimental results indicate that the proposed method can significantly outperform the baseline methods, and also obtains improvement over the existing methods.</description><identifier>ISBN: 142443520X</identifier><identifier>ISBN: 9781424435203</identifier><identifier>EISBN: 9781424435210</identifier><identifier>EISBN: 1424435218</identifier><identifier>DOI: 10.1109/ICCSE.2009.5228502</identifier><identifier>LCCN: 2008911100</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Candidate Mapping Set ; Computer science ; Computer science education ; Knowledge management ; Ontologies ; Ontology Interoperability ; Ontology Mapping ; Petroleum ; Runtime ; Semantic Web ; Software engineering ; Thesauri</subject><ispartof>2009 4th International Conference on Computer Science & Education, 2009, p.165-169</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5228502$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5228502$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu Ya-Juan</creatorcontrib><creatorcontrib>Lang Ji-Sheng</creatorcontrib><creatorcontrib>Shang Fu-Hua</creatorcontrib><title>A similarity-based approach for ontology mapping</title><title>2009 4th International Conference on Computer Science & Education</title><addtitle>ICCSE</addtitle><description>Ontology mapping is the key point to reach interoperability over ontologies. In semantic Web environment, ontologies are usually distributed and heterogeneous and thus it is necessary to find the mapping between them. Aiming at ontology mapping between different ontologies, a new synthesized algorithm of concept similarity is proposed in this paper. An advanced measure of setting candidate mapping set is applied to reduce the runtime of the account. The presented algorithm involves concept name, attribute, structure and instance levels. To deal with the problem of name conflict in mapping process, we use thesaurus and statistical technique. Experimental results indicate that the proposed method can significantly outperform the baseline methods, and also obtains improvement over the existing methods.</description><subject>Artificial intelligence</subject><subject>Candidate Mapping Set</subject><subject>Computer science</subject><subject>Computer science education</subject><subject>Knowledge management</subject><subject>Ontologies</subject><subject>Ontology Interoperability</subject><subject>Ontology Mapping</subject><subject>Petroleum</subject><subject>Runtime</subject><subject>Semantic Web</subject><subject>Software engineering</subject><subject>Thesauri</subject><isbn>142443520X</isbn><isbn>9781424435203</isbn><isbn>9781424435210</isbn><isbn>1424435218</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T8FqwzAU8xiFrV1-YLvkB5I9O352fCyhWwuFHbbBbuXFsTuPpAlxLvn7BdbpIiQkgRh75JBzDub5UFXvu1wAmByFKBHEDUuMLrkUUhYoONyy9b-ArxVbL9nS8KUMdyyJ8QcWSBRGqHsG2zSGLrQ0hmnOaoquSWkYxp7sd-r7Me0vU9_25zntFjtczg9s5amNLrnyhn2-7D6qfXZ8ez1U22MWuMYpK6EwSnn01mgttJLcKOINoPKkVYG1JQKpaigbEoSS0JCWmqOtnXWeig17-tsNzrnTMIaOxvl0fVz8AtJHRtM</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Wu Ya-Juan</creator><creator>Lang Ji-Sheng</creator><creator>Shang Fu-Hua</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>A similarity-based approach for ontology mapping</title><author>Wu Ya-Juan ; Lang Ji-Sheng ; Shang Fu-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-803966f5fc9772764196a1d056fa7635bcaa046b08da2a54a59a74715cbecefa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial intelligence</topic><topic>Candidate Mapping Set</topic><topic>Computer science</topic><topic>Computer science education</topic><topic>Knowledge management</topic><topic>Ontologies</topic><topic>Ontology Interoperability</topic><topic>Ontology Mapping</topic><topic>Petroleum</topic><topic>Runtime</topic><topic>Semantic Web</topic><topic>Software engineering</topic><topic>Thesauri</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu Ya-Juan</creatorcontrib><creatorcontrib>Lang Ji-Sheng</creatorcontrib><creatorcontrib>Shang Fu-Hua</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu Ya-Juan</au><au>Lang Ji-Sheng</au><au>Shang Fu-Hua</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A similarity-based approach for ontology mapping</atitle><btitle>2009 4th International Conference on Computer Science & Education</btitle><stitle>ICCSE</stitle><date>2009-07</date><risdate>2009</risdate><spage>165</spage><epage>169</epage><pages>165-169</pages><isbn>142443520X</isbn><isbn>9781424435203</isbn><eisbn>9781424435210</eisbn><eisbn>1424435218</eisbn><abstract>Ontology mapping is the key point to reach interoperability over ontologies. In semantic Web environment, ontologies are usually distributed and heterogeneous and thus it is necessary to find the mapping between them. Aiming at ontology mapping between different ontologies, a new synthesized algorithm of concept similarity is proposed in this paper. An advanced measure of setting candidate mapping set is applied to reduce the runtime of the account. The presented algorithm involves concept name, attribute, structure and instance levels. To deal with the problem of name conflict in mapping process, we use thesaurus and statistical technique. Experimental results indicate that the proposed method can significantly outperform the baseline methods, and also obtains improvement over the existing methods.</abstract><pub>IEEE</pub><doi>10.1109/ICCSE.2009.5228502</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 142443520X |
ispartof | 2009 4th International Conference on Computer Science & Education, 2009, p.165-169 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5228502 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Candidate Mapping Set Computer science Computer science education Knowledge management Ontologies Ontology Interoperability Ontology Mapping Petroleum Runtime Semantic Web Software engineering Thesauri |
title | A similarity-based approach for ontology mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20similarity-based%20approach%20for%20ontology%20mapping&rft.btitle=2009%204th%20International%20Conference%20on%20Computer%20Science%20&%20Education&rft.au=Wu%20Ya-Juan&rft.date=2009-07&rft.spage=165&rft.epage=169&rft.pages=165-169&rft.isbn=142443520X&rft.isbn_list=9781424435203&rft_id=info:doi/10.1109/ICCSE.2009.5228502&rft_dat=%3Cieee_6IE%3E5228502%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424435210&rft.eisbn_list=1424435218&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5228502&rfr_iscdi=true |