Design of associative memories by using machine learning
Problem of nonlinear mapping-based design of associative memories can be regarded as a covering problem in the case of feedforward architecture and as a generation of fixed points in the case of feedback structure. The machine learning techniques has been used as the analytical tool.
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | |
container_start_page | 209 |
container_title | |
container_volume | |
creator | Citko, W. Sienko, W. |
description | Problem of nonlinear mapping-based design of associative memories can be regarded as a covering problem in the case of feedforward architecture and as a generation of fixed points in the case of feedback structure. The machine learning techniques has been used as the analytical tool. |
doi_str_mv | 10.1109/INDS.2009.5227991 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5227991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5227991</ieee_id><sourcerecordid>5227991</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f7330004ac2e32cf8cd15809c7f166729731deb198bdd79c7d15594697587c823</originalsourceid><addsrcrecordid>eNotj8FOwzAQRI0AiarkAxAX_0CCvevE3iNqoVSq4EDvleNsilGTorgg9e9JoXtZvVlpdkaIO60KrRU9LF_n7wUoRUUJYIn0hcjIOnR4QoP68o-1AWPQGaOuxAQQTO6A7I3IUvpU45gSqIKJcHNOcdvLfSt9SvsQ_SH-sOy42w-Rk6yP8jvFfis7Hz5iz3LHfuhH4VZct36XODvvqVg_P61nL_nqbbGcPa7ySOqQtxbx9M0HYITQutDo0ikKttVVZcdIqBuuNbm6aewoj-eSTEW2dDY4wKm4_7eNzLz5GmLnh-PmXB1_AXG9SQU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design of associative memories by using machine learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Citko, W. ; Sienko, W.</creator><creatorcontrib>Citko, W. ; Sienko, W.</creatorcontrib><description>Problem of nonlinear mapping-based design of associative memories can be regarded as a covering problem in the case of feedforward architecture and as a generation of fixed points in the case of feedback structure. The machine learning techniques has been used as the analytical tool.</description><identifier>ISSN: 2324-8297</identifier><identifier>ISBN: 9781424438440</identifier><identifier>ISBN: 1424438446</identifier><identifier>EISBN: 9783832279431</identifier><identifier>EISBN: 3832279431</identifier><identifier>DOI: 10.1109/INDS.2009.5227991</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Associative memory ; design of associative memories ; Filters ; Hilbert space ; Kernel ; Large-scale systems ; Machine learning ; Neural networks ; Neurofeedback ; Nonlinear equations ; nonlinear mappings</subject><ispartof>2009 2nd International Workshop on Nonlinear Dynamics and Synchronization, 2009, p.209-212</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5227991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5227991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Citko, W.</creatorcontrib><creatorcontrib>Sienko, W.</creatorcontrib><title>Design of associative memories by using machine learning</title><title>2009 2nd International Workshop on Nonlinear Dynamics and Synchronization</title><addtitle>INDS</addtitle><description>Problem of nonlinear mapping-based design of associative memories can be regarded as a covering problem in the case of feedforward architecture and as a generation of fixed points in the case of feedback structure. The machine learning techniques has been used as the analytical tool.</description><subject>Approximation methods</subject><subject>Associative memory</subject><subject>design of associative memories</subject><subject>Filters</subject><subject>Hilbert space</subject><subject>Kernel</subject><subject>Large-scale systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neurofeedback</subject><subject>Nonlinear equations</subject><subject>nonlinear mappings</subject><issn>2324-8297</issn><isbn>9781424438440</isbn><isbn>1424438446</isbn><isbn>9783832279431</isbn><isbn>3832279431</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FOwzAQRI0AiarkAxAX_0CCvevE3iNqoVSq4EDvleNsilGTorgg9e9JoXtZvVlpdkaIO60KrRU9LF_n7wUoRUUJYIn0hcjIOnR4QoP68o-1AWPQGaOuxAQQTO6A7I3IUvpU45gSqIKJcHNOcdvLfSt9SvsQ_SH-sOy42w-Rk6yP8jvFfis7Hz5iz3LHfuhH4VZct36XODvvqVg_P61nL_nqbbGcPa7ySOqQtxbx9M0HYITQutDo0ikKttVVZcdIqBuuNbm6aewoj-eSTEW2dDY4wKm4_7eNzLz5GmLnh-PmXB1_AXG9SQU</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Citko, W.</creator><creator>Sienko, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>Design of associative memories by using machine learning</title><author>Citko, W. ; Sienko, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f7330004ac2e32cf8cd15809c7f166729731deb198bdd79c7d15594697587c823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation methods</topic><topic>Associative memory</topic><topic>design of associative memories</topic><topic>Filters</topic><topic>Hilbert space</topic><topic>Kernel</topic><topic>Large-scale systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neurofeedback</topic><topic>Nonlinear equations</topic><topic>nonlinear mappings</topic><toplevel>online_resources</toplevel><creatorcontrib>Citko, W.</creatorcontrib><creatorcontrib>Sienko, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Citko, W.</au><au>Sienko, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design of associative memories by using machine learning</atitle><btitle>2009 2nd International Workshop on Nonlinear Dynamics and Synchronization</btitle><stitle>INDS</stitle><date>2009-07</date><risdate>2009</risdate><spage>209</spage><epage>212</epage><pages>209-212</pages><issn>2324-8297</issn><isbn>9781424438440</isbn><isbn>1424438446</isbn><eisbn>9783832279431</eisbn><eisbn>3832279431</eisbn><abstract>Problem of nonlinear mapping-based design of associative memories can be regarded as a covering problem in the case of feedforward architecture and as a generation of fixed points in the case of feedback structure. The machine learning techniques has been used as the analytical tool.</abstract><pub>IEEE</pub><doi>10.1109/INDS.2009.5227991</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2324-8297 |
ispartof | 2009 2nd International Workshop on Nonlinear Dynamics and Synchronization, 2009, p.209-212 |
issn | 2324-8297 |
language | eng |
recordid | cdi_ieee_primary_5227991 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation methods Associative memory design of associative memories Filters Hilbert space Kernel Large-scale systems Machine learning Neural networks Neurofeedback Nonlinear equations nonlinear mappings |
title | Design of associative memories by using machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20of%20associative%20memories%20by%20using%20machine%20learning&rft.btitle=2009%202nd%20International%20Workshop%20on%20Nonlinear%20Dynamics%20and%20Synchronization&rft.au=Citko,%20W.&rft.date=2009-07&rft.spage=209&rft.epage=212&rft.pages=209-212&rft.issn=2324-8297&rft.isbn=9781424438440&rft.isbn_list=1424438446&rft_id=info:doi/10.1109/INDS.2009.5227991&rft_dat=%3Cieee_6IE%3E5227991%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783832279431&rft.eisbn_list=3832279431&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5227991&rfr_iscdi=true |