A highly efficient channel equalizer for digital communication system in Neural Network paradigm
This paper presents a new approach to equalization of communication channels using RBF neural networks as a classifier. Abundant research has been done in using neural network for the problem of channel equalization. The classical gradient based methods suffer from the problem of getting trapped in...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 11 |
container_title | |
container_volume | |
creator | Satapathy, J.K. Subhashini, K.R. Manohar, G.L. |
description | This paper presents a new approach to equalization of communication channels using RBF neural networks as a classifier. Abundant research has been done in using neural network for the problem of channel equalization. The classical gradient based methods suffer from the problem of getting trapped in local minima. And the stochastic methods which can give a global optimum solution need long computational times. In this paper a novel method in which the task of an equalizer is decentralized by using a FIR filter for studying the channel characteristics and RBF neural network for classifying the received data. In the results it can be observed that this method of equalization provides optimum performance, which can be obtained using tabu search. Also, since we are using FIR filter, training will be very faster and LMS algorithm is computationally very simple. |
doi_str_mv | 10.1109/CITISIA.2009.5224249 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5224249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5224249</ieee_id><sourcerecordid>5224249</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7aa0fee119dc2a4692781f35368aee60f164b721c61bc76516e6f4c8cbb5543c3</originalsourceid><addsrcrecordid>eNpVUMtOwzAQNEKVgNIvgIN_oMV2_DxGFdBIVTlQzsVx140hj-IkQuXrsUQv7GV3tDOj2UXonpIFpcQ8LItt8VrkC0aIWQjGOOPmAs2M0jSNnGmt9OU_LOkE3SS6NkRJw67QrO8_SCouMsHkNXrPcRUOVX3C4H1wAdoBu8q2LdQYvkZbhx-I2HcR78MhDLbGrmuasQ3ODqFrcX_qB2hwaPEGxpjWGxi-u_iJjzbaJGlu0cTbuofZuU_R29Pjdrmar1-ei2W-ngeqxDBX1hIPQKnZO2Z5ypqO8JnIpLYAkngqeakYdZKWTklBJUjPnXZlKQTPXDZFd3--AQB2xxgaG0-785OyX1I0Wlw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A highly efficient channel equalizer for digital communication system in Neural Network paradigm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Satapathy, J.K. ; Subhashini, K.R. ; Manohar, G.L.</creator><creatorcontrib>Satapathy, J.K. ; Subhashini, K.R. ; Manohar, G.L.</creatorcontrib><description>This paper presents a new approach to equalization of communication channels using RBF neural networks as a classifier. Abundant research has been done in using neural network for the problem of channel equalization. The classical gradient based methods suffer from the problem of getting trapped in local minima. And the stochastic methods which can give a global optimum solution need long computational times. In this paper a novel method in which the task of an equalizer is decentralized by using a FIR filter for studying the channel characteristics and RBF neural network for classifying the received data. In the results it can be observed that this method of equalization provides optimum performance, which can be obtained using tabu search. Also, since we are using FIR filter, training will be very faster and LMS algorithm is computationally very simple.</description><identifier>ISBN: 9781424428861</identifier><identifier>ISBN: 1424428866</identifier><identifier>EISBN: 9781424428878</identifier><identifier>EISBN: 1424428874</identifier><identifier>DOI: 10.1109/CITISIA.2009.5224249</identifier><identifier>LCCN: 2008907692</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive equalizers ; Clustering algorithms ; Communication channels ; Digital communication ; Finite impulse response filter ; Intelligent systems ; Intersymbol interference ; Least squares approximation ; Neural networks ; Stochastic processes</subject><ispartof>2009 Innovative Technologies in Intelligent Systems and Industrial Applications, 2009, p.11-16</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5224249$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5224249$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Satapathy, J.K.</creatorcontrib><creatorcontrib>Subhashini, K.R.</creatorcontrib><creatorcontrib>Manohar, G.L.</creatorcontrib><title>A highly efficient channel equalizer for digital communication system in Neural Network paradigm</title><title>2009 Innovative Technologies in Intelligent Systems and Industrial Applications</title><addtitle>CITISIA</addtitle><description>This paper presents a new approach to equalization of communication channels using RBF neural networks as a classifier. Abundant research has been done in using neural network for the problem of channel equalization. The classical gradient based methods suffer from the problem of getting trapped in local minima. And the stochastic methods which can give a global optimum solution need long computational times. In this paper a novel method in which the task of an equalizer is decentralized by using a FIR filter for studying the channel characteristics and RBF neural network for classifying the received data. In the results it can be observed that this method of equalization provides optimum performance, which can be obtained using tabu search. Also, since we are using FIR filter, training will be very faster and LMS algorithm is computationally very simple.</description><subject>Adaptive equalizers</subject><subject>Clustering algorithms</subject><subject>Communication channels</subject><subject>Digital communication</subject><subject>Finite impulse response filter</subject><subject>Intelligent systems</subject><subject>Intersymbol interference</subject><subject>Least squares approximation</subject><subject>Neural networks</subject><subject>Stochastic processes</subject><isbn>9781424428861</isbn><isbn>1424428866</isbn><isbn>9781424428878</isbn><isbn>1424428874</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMtOwzAQNEKVgNIvgIN_oMV2_DxGFdBIVTlQzsVx140hj-IkQuXrsUQv7GV3tDOj2UXonpIFpcQ8LItt8VrkC0aIWQjGOOPmAs2M0jSNnGmt9OU_LOkE3SS6NkRJw67QrO8_SCouMsHkNXrPcRUOVX3C4H1wAdoBu8q2LdQYvkZbhx-I2HcR78MhDLbGrmuasQ3ODqFrcX_qB2hwaPEGxpjWGxi-u_iJjzbaJGlu0cTbuofZuU_R29Pjdrmar1-ei2W-ngeqxDBX1hIPQKnZO2Z5ypqO8JnIpLYAkngqeakYdZKWTklBJUjPnXZlKQTPXDZFd3--AQB2xxgaG0-785OyX1I0Wlw</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Satapathy, J.K.</creator><creator>Subhashini, K.R.</creator><creator>Manohar, G.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>A highly efficient channel equalizer for digital communication system in Neural Network paradigm</title><author>Satapathy, J.K. ; Subhashini, K.R. ; Manohar, G.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7aa0fee119dc2a4692781f35368aee60f164b721c61bc76516e6f4c8cbb5543c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive equalizers</topic><topic>Clustering algorithms</topic><topic>Communication channels</topic><topic>Digital communication</topic><topic>Finite impulse response filter</topic><topic>Intelligent systems</topic><topic>Intersymbol interference</topic><topic>Least squares approximation</topic><topic>Neural networks</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Satapathy, J.K.</creatorcontrib><creatorcontrib>Subhashini, K.R.</creatorcontrib><creatorcontrib>Manohar, G.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Satapathy, J.K.</au><au>Subhashini, K.R.</au><au>Manohar, G.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A highly efficient channel equalizer for digital communication system in Neural Network paradigm</atitle><btitle>2009 Innovative Technologies in Intelligent Systems and Industrial Applications</btitle><stitle>CITISIA</stitle><date>2009-07</date><risdate>2009</risdate><spage>11</spage><epage>16</epage><pages>11-16</pages><isbn>9781424428861</isbn><isbn>1424428866</isbn><eisbn>9781424428878</eisbn><eisbn>1424428874</eisbn><abstract>This paper presents a new approach to equalization of communication channels using RBF neural networks as a classifier. Abundant research has been done in using neural network for the problem of channel equalization. The classical gradient based methods suffer from the problem of getting trapped in local minima. And the stochastic methods which can give a global optimum solution need long computational times. In this paper a novel method in which the task of an equalizer is decentralized by using a FIR filter for studying the channel characteristics and RBF neural network for classifying the received data. In the results it can be observed that this method of equalization provides optimum performance, which can be obtained using tabu search. Also, since we are using FIR filter, training will be very faster and LMS algorithm is computationally very simple.</abstract><pub>IEEE</pub><doi>10.1109/CITISIA.2009.5224249</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424428861 |
ispartof | 2009 Innovative Technologies in Intelligent Systems and Industrial Applications, 2009, p.11-16 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5224249 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive equalizers Clustering algorithms Communication channels Digital communication Finite impulse response filter Intelligent systems Intersymbol interference Least squares approximation Neural networks Stochastic processes |
title | A highly efficient channel equalizer for digital communication system in Neural Network paradigm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20highly%20efficient%20channel%20equalizer%20for%20digital%20communication%20system%20in%20Neural%20Network%20paradigm&rft.btitle=2009%20Innovative%20Technologies%20in%20Intelligent%20Systems%20and%20Industrial%20Applications&rft.au=Satapathy,%20J.K.&rft.date=2009-07&rft.spage=11&rft.epage=16&rft.pages=11-16&rft.isbn=9781424428861&rft.isbn_list=1424428866&rft_id=info:doi/10.1109/CITISIA.2009.5224249&rft_dat=%3Cieee_6IE%3E5224249%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424428878&rft.eisbn_list=1424428874&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5224249&rfr_iscdi=true |