A highly efficient channel equalizer for digital communication system in Neural Network paradigm

This paper presents a new approach to equalization of communication channels using RBF neural networks as a classifier. Abundant research has been done in using neural network for the problem of channel equalization. The classical gradient based methods suffer from the problem of getting trapped in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Satapathy, J.K., Subhashini, K.R., Manohar, G.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 11
container_title
container_volume
creator Satapathy, J.K.
Subhashini, K.R.
Manohar, G.L.
description This paper presents a new approach to equalization of communication channels using RBF neural networks as a classifier. Abundant research has been done in using neural network for the problem of channel equalization. The classical gradient based methods suffer from the problem of getting trapped in local minima. And the stochastic methods which can give a global optimum solution need long computational times. In this paper a novel method in which the task of an equalizer is decentralized by using a FIR filter for studying the channel characteristics and RBF neural network for classifying the received data. In the results it can be observed that this method of equalization provides optimum performance, which can be obtained using tabu search. Also, since we are using FIR filter, training will be very faster and LMS algorithm is computationally very simple.
doi_str_mv 10.1109/CITISIA.2009.5224249
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5224249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5224249</ieee_id><sourcerecordid>5224249</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7aa0fee119dc2a4692781f35368aee60f164b721c61bc76516e6f4c8cbb5543c3</originalsourceid><addsrcrecordid>eNpVUMtOwzAQNEKVgNIvgIN_oMV2_DxGFdBIVTlQzsVx140hj-IkQuXrsUQv7GV3tDOj2UXonpIFpcQ8LItt8VrkC0aIWQjGOOPmAs2M0jSNnGmt9OU_LOkE3SS6NkRJw67QrO8_SCouMsHkNXrPcRUOVX3C4H1wAdoBu8q2LdQYvkZbhx-I2HcR78MhDLbGrmuasQ3ODqFrcX_qB2hwaPEGxpjWGxi-u_iJjzbaJGlu0cTbuofZuU_R29Pjdrmar1-ei2W-ngeqxDBX1hIPQKnZO2Z5ypqO8JnIpLYAkngqeakYdZKWTklBJUjPnXZlKQTPXDZFd3--AQB2xxgaG0-785OyX1I0Wlw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A highly efficient channel equalizer for digital communication system in Neural Network paradigm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Satapathy, J.K. ; Subhashini, K.R. ; Manohar, G.L.</creator><creatorcontrib>Satapathy, J.K. ; Subhashini, K.R. ; Manohar, G.L.</creatorcontrib><description>This paper presents a new approach to equalization of communication channels using RBF neural networks as a classifier. Abundant research has been done in using neural network for the problem of channel equalization. The classical gradient based methods suffer from the problem of getting trapped in local minima. And the stochastic methods which can give a global optimum solution need long computational times. In this paper a novel method in which the task of an equalizer is decentralized by using a FIR filter for studying the channel characteristics and RBF neural network for classifying the received data. In the results it can be observed that this method of equalization provides optimum performance, which can be obtained using tabu search. Also, since we are using FIR filter, training will be very faster and LMS algorithm is computationally very simple.</description><identifier>ISBN: 9781424428861</identifier><identifier>ISBN: 1424428866</identifier><identifier>EISBN: 9781424428878</identifier><identifier>EISBN: 1424428874</identifier><identifier>DOI: 10.1109/CITISIA.2009.5224249</identifier><identifier>LCCN: 2008907692</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive equalizers ; Clustering algorithms ; Communication channels ; Digital communication ; Finite impulse response filter ; Intelligent systems ; Intersymbol interference ; Least squares approximation ; Neural networks ; Stochastic processes</subject><ispartof>2009 Innovative Technologies in Intelligent Systems and Industrial Applications, 2009, p.11-16</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5224249$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5224249$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Satapathy, J.K.</creatorcontrib><creatorcontrib>Subhashini, K.R.</creatorcontrib><creatorcontrib>Manohar, G.L.</creatorcontrib><title>A highly efficient channel equalizer for digital communication system in Neural Network paradigm</title><title>2009 Innovative Technologies in Intelligent Systems and Industrial Applications</title><addtitle>CITISIA</addtitle><description>This paper presents a new approach to equalization of communication channels using RBF neural networks as a classifier. Abundant research has been done in using neural network for the problem of channel equalization. The classical gradient based methods suffer from the problem of getting trapped in local minima. And the stochastic methods which can give a global optimum solution need long computational times. In this paper a novel method in which the task of an equalizer is decentralized by using a FIR filter for studying the channel characteristics and RBF neural network for classifying the received data. In the results it can be observed that this method of equalization provides optimum performance, which can be obtained using tabu search. Also, since we are using FIR filter, training will be very faster and LMS algorithm is computationally very simple.</description><subject>Adaptive equalizers</subject><subject>Clustering algorithms</subject><subject>Communication channels</subject><subject>Digital communication</subject><subject>Finite impulse response filter</subject><subject>Intelligent systems</subject><subject>Intersymbol interference</subject><subject>Least squares approximation</subject><subject>Neural networks</subject><subject>Stochastic processes</subject><isbn>9781424428861</isbn><isbn>1424428866</isbn><isbn>9781424428878</isbn><isbn>1424428874</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMtOwzAQNEKVgNIvgIN_oMV2_DxGFdBIVTlQzsVx140hj-IkQuXrsUQv7GV3tDOj2UXonpIFpcQ8LItt8VrkC0aIWQjGOOPmAs2M0jSNnGmt9OU_LOkE3SS6NkRJw67QrO8_SCouMsHkNXrPcRUOVX3C4H1wAdoBu8q2LdQYvkZbhx-I2HcR78MhDLbGrmuasQ3ODqFrcX_qB2hwaPEGxpjWGxi-u_iJjzbaJGlu0cTbuofZuU_R29Pjdrmar1-ei2W-ngeqxDBX1hIPQKnZO2Z5ypqO8JnIpLYAkngqeakYdZKWTklBJUjPnXZlKQTPXDZFd3--AQB2xxgaG0-785OyX1I0Wlw</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Satapathy, J.K.</creator><creator>Subhashini, K.R.</creator><creator>Manohar, G.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>A highly efficient channel equalizer for digital communication system in Neural Network paradigm</title><author>Satapathy, J.K. ; Subhashini, K.R. ; Manohar, G.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7aa0fee119dc2a4692781f35368aee60f164b721c61bc76516e6f4c8cbb5543c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive equalizers</topic><topic>Clustering algorithms</topic><topic>Communication channels</topic><topic>Digital communication</topic><topic>Finite impulse response filter</topic><topic>Intelligent systems</topic><topic>Intersymbol interference</topic><topic>Least squares approximation</topic><topic>Neural networks</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Satapathy, J.K.</creatorcontrib><creatorcontrib>Subhashini, K.R.</creatorcontrib><creatorcontrib>Manohar, G.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Satapathy, J.K.</au><au>Subhashini, K.R.</au><au>Manohar, G.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A highly efficient channel equalizer for digital communication system in Neural Network paradigm</atitle><btitle>2009 Innovative Technologies in Intelligent Systems and Industrial Applications</btitle><stitle>CITISIA</stitle><date>2009-07</date><risdate>2009</risdate><spage>11</spage><epage>16</epage><pages>11-16</pages><isbn>9781424428861</isbn><isbn>1424428866</isbn><eisbn>9781424428878</eisbn><eisbn>1424428874</eisbn><abstract>This paper presents a new approach to equalization of communication channels using RBF neural networks as a classifier. Abundant research has been done in using neural network for the problem of channel equalization. The classical gradient based methods suffer from the problem of getting trapped in local minima. And the stochastic methods which can give a global optimum solution need long computational times. In this paper a novel method in which the task of an equalizer is decentralized by using a FIR filter for studying the channel characteristics and RBF neural network for classifying the received data. In the results it can be observed that this method of equalization provides optimum performance, which can be obtained using tabu search. Also, since we are using FIR filter, training will be very faster and LMS algorithm is computationally very simple.</abstract><pub>IEEE</pub><doi>10.1109/CITISIA.2009.5224249</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424428861
ispartof 2009 Innovative Technologies in Intelligent Systems and Industrial Applications, 2009, p.11-16
issn
language eng
recordid cdi_ieee_primary_5224249
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive equalizers
Clustering algorithms
Communication channels
Digital communication
Finite impulse response filter
Intelligent systems
Intersymbol interference
Least squares approximation
Neural networks
Stochastic processes
title A highly efficient channel equalizer for digital communication system in Neural Network paradigm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20highly%20efficient%20channel%20equalizer%20for%20digital%20communication%20system%20in%20Neural%20Network%20paradigm&rft.btitle=2009%20Innovative%20Technologies%20in%20Intelligent%20Systems%20and%20Industrial%20Applications&rft.au=Satapathy,%20J.K.&rft.date=2009-07&rft.spage=11&rft.epage=16&rft.pages=11-16&rft.isbn=9781424428861&rft.isbn_list=1424428866&rft_id=info:doi/10.1109/CITISIA.2009.5224249&rft_dat=%3Cieee_6IE%3E5224249%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424428878&rft.eisbn_list=1424428874&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5224249&rfr_iscdi=true