Dynamic and Steady-State Solutions for a General Availability Model

Exact dynamic and steady-state solutions are given for the state equations of a fairly general availability model with known, constant, failure and repair rates for each component of the system. The states of all components are mutually statistically independent. Rules for writing the transition mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 1985-12, Vol.R-34 (5), p.539-544
1. Verfasser: Johnson, L. Ensign
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 544
container_issue 5
container_start_page 539
container_title IEEE transactions on reliability
container_volume R-34
creator Johnson, L. Ensign
description Exact dynamic and steady-state solutions are given for the state equations of a fairly general availability model with known, constant, failure and repair rates for each component of the system. The states of all components are mutually statistically independent. Rules for writing the transition matrix and its eigenvalues and eigenvectors are given, and explicit formulas for the solutions are given in terms of the latter. Three special cases are derived from this model. A dynamic solution is given for a reliability model with no repair. Steady-state solutions are found for a model in which all components have the same failure and repair rates and for a model in which repair is required before a second failure can occur. For all models, approximate upper bounds are developed for the time required for the systems to arrive at the steady state; the longest time constant in the solution is given in terms of the failure and repair rates.
doi_str_mv 10.1109/TR.1985.5222258
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5222258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5222258</ieee_id><sourcerecordid>24583951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-b1e4e2224dadc04713d3784083304f67564c3203713b4ac1da5292086a515aa53</originalsourceid><addsrcrecordid>eNqNkEFLAzEQhYMoWKtnD15yEG_bZjbJbvZYaq1CRWjrOUyzWYikuzXZCvvv3dLas3MZhvfN4_EIuQc2AmDFeL0cQaHkSKb9SHVBBiClSiBP4ZIMGAOVFDItrslNjF_9KUShBmT63NW4dYZiXdJVa7HsklWLraWrxu9b19SRVk2gSOe2tgE9nfyg87hx3rUdfW9K62_JVYU-2rvTHpLPl9l6-posPuZv08kiMVyyNtmAFbbPJkosDRM58JLnSjDFORNVlstMGJ4y3gsbgQZK7OOmTGUoQSJKPiRPR99daL73NrZ666Kx3mNtm33UqZCKFxL-A2Z5lh7A8RE0oYkx2Ervgtti6DQwfWhVr5f60Ko-tdp_PJ6sMRr0VcDauHh-UzIHKESPPRwxZ609q38mv0lofUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24567621</pqid></control><display><type>article</type><title>Dynamic and Steady-State Solutions for a General Availability Model</title><source>IEEE Electronic Library (IEL)</source><creator>Johnson, L. Ensign</creator><creatorcontrib>Johnson, L. Ensign</creatorcontrib><description>Exact dynamic and steady-state solutions are given for the state equations of a fairly general availability model with known, constant, failure and repair rates for each component of the system. The states of all components are mutually statistically independent. Rules for writing the transition matrix and its eigenvalues and eigenvectors are given, and explicit formulas for the solutions are given in terms of the latter. Three special cases are derived from this model. A dynamic solution is given for a reliability model with no repair. Steady-state solutions are found for a model in which all components have the same failure and repair rates and for a model in which repair is required before a second failure can occur. For all models, approximate upper bounds are developed for the time required for the systems to arrive at the steady state; the longest time constant in the solution is given in terms of the failure and repair rates.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.1985.5222258</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Availability ; Differential equations ; Eigenvalue ; Eigenvalues and eigenfunctions ; Eigenvector ; Exact sciences and technology ; Failure analysis ; Inspection ; Linear systems ; Markov model ; Operational research and scientific management ; Operational research. Management science ; Reliability theory. Replacement problems ; State variable ; Steady-state ; Upper bound ; Vectors ; Writing</subject><ispartof>IEEE transactions on reliability, 1985-12, Vol.R-34 (5), p.539-544</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-b1e4e2224dadc04713d3784083304f67564c3203713b4ac1da5292086a515aa53</citedby><cites>FETCH-LOGICAL-c350t-b1e4e2224dadc04713d3784083304f67564c3203713b4ac1da5292086a515aa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5222258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5222258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8571194$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, L. Ensign</creatorcontrib><title>Dynamic and Steady-State Solutions for a General Availability Model</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Exact dynamic and steady-state solutions are given for the state equations of a fairly general availability model with known, constant, failure and repair rates for each component of the system. The states of all components are mutually statistically independent. Rules for writing the transition matrix and its eigenvalues and eigenvectors are given, and explicit formulas for the solutions are given in terms of the latter. Three special cases are derived from this model. A dynamic solution is given for a reliability model with no repair. Steady-state solutions are found for a model in which all components have the same failure and repair rates and for a model in which repair is required before a second failure can occur. For all models, approximate upper bounds are developed for the time required for the systems to arrive at the steady state; the longest time constant in the solution is given in terms of the failure and repair rates.</description><subject>Applied sciences</subject><subject>Availability</subject><subject>Differential equations</subject><subject>Eigenvalue</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Eigenvector</subject><subject>Exact sciences and technology</subject><subject>Failure analysis</subject><subject>Inspection</subject><subject>Linear systems</subject><subject>Markov model</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Reliability theory. Replacement problems</subject><subject>State variable</subject><subject>Steady-state</subject><subject>Upper bound</subject><subject>Vectors</subject><subject>Writing</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLAzEQhYMoWKtnD15yEG_bZjbJbvZYaq1CRWjrOUyzWYikuzXZCvvv3dLas3MZhvfN4_EIuQc2AmDFeL0cQaHkSKb9SHVBBiClSiBP4ZIMGAOVFDItrslNjF_9KUShBmT63NW4dYZiXdJVa7HsklWLraWrxu9b19SRVk2gSOe2tgE9nfyg87hx3rUdfW9K62_JVYU-2rvTHpLPl9l6-posPuZv08kiMVyyNtmAFbbPJkosDRM58JLnSjDFORNVlstMGJ4y3gsbgQZK7OOmTGUoQSJKPiRPR99daL73NrZ666Kx3mNtm33UqZCKFxL-A2Z5lh7A8RE0oYkx2Ervgtti6DQwfWhVr5f60Ko-tdp_PJ6sMRr0VcDauHh-UzIHKESPPRwxZ609q38mv0lofUI</recordid><startdate>19851201</startdate><enddate>19851201</enddate><creator>Johnson, L. Ensign</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19851201</creationdate><title>Dynamic and Steady-State Solutions for a General Availability Model</title><author>Johnson, L. Ensign</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-b1e4e2224dadc04713d3784083304f67564c3203713b4ac1da5292086a515aa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>Availability</topic><topic>Differential equations</topic><topic>Eigenvalue</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Eigenvector</topic><topic>Exact sciences and technology</topic><topic>Failure analysis</topic><topic>Inspection</topic><topic>Linear systems</topic><topic>Markov model</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Reliability theory. Replacement problems</topic><topic>State variable</topic><topic>Steady-state</topic><topic>Upper bound</topic><topic>Vectors</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, L. Ensign</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Johnson, L. Ensign</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic and Steady-State Solutions for a General Availability Model</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>1985-12-01</date><risdate>1985</risdate><volume>R-34</volume><issue>5</issue><spage>539</spage><epage>544</epage><pages>539-544</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Exact dynamic and steady-state solutions are given for the state equations of a fairly general availability model with known, constant, failure and repair rates for each component of the system. The states of all components are mutually statistically independent. Rules for writing the transition matrix and its eigenvalues and eigenvectors are given, and explicit formulas for the solutions are given in terms of the latter. Three special cases are derived from this model. A dynamic solution is given for a reliability model with no repair. Steady-state solutions are found for a model in which all components have the same failure and repair rates and for a model in which repair is required before a second failure can occur. For all models, approximate upper bounds are developed for the time required for the systems to arrive at the steady state; the longest time constant in the solution is given in terms of the failure and repair rates.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TR.1985.5222258</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 1985-12, Vol.R-34 (5), p.539-544
issn 0018-9529
1558-1721
language eng
recordid cdi_ieee_primary_5222258
source IEEE Electronic Library (IEL)
subjects Applied sciences
Availability
Differential equations
Eigenvalue
Eigenvalues and eigenfunctions
Eigenvector
Exact sciences and technology
Failure analysis
Inspection
Linear systems
Markov model
Operational research and scientific management
Operational research. Management science
Reliability theory. Replacement problems
State variable
Steady-state
Upper bound
Vectors
Writing
title Dynamic and Steady-State Solutions for a General Availability Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20and%20Steady-State%20Solutions%20for%20a%20General%20Availability%20Model&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Johnson,%20L.%20Ensign&rft.date=1985-12-01&rft.volume=R-34&rft.issue=5&rft.spage=539&rft.epage=544&rft.pages=539-544&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.1985.5222258&rft_dat=%3Cproquest_RIE%3E24583951%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24567621&rft_id=info:pmid/&rft_ieee_id=5222258&rfr_iscdi=true