On the Availability of 1-out-of-2 Standby Systems

The accuracy of the approximation (a1 +a2)/(1 + a1a2) for the availability of a 1-out-of-2:G standby system with unit availabilities a1, a2 is examined. The units have exponential failure and repair time distributions. The approximation is exact for equal repair rates. An expression is developed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 1984-12, Vol.R-33 (5), p.442-444
1. Verfasser: Sherwin, D. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 444
container_issue 5
container_start_page 442
container_title IEEE transactions on reliability
container_volume R-33
creator Sherwin, D. J.
description The accuracy of the approximation (a1 +a2)/(1 + a1a2) for the availability of a 1-out-of-2:G standby system with unit availabilities a1, a2 is examined. The units have exponential failure and repair time distributions. The approximation is exact for equal repair rates. An expression is developed in terms of a1 and a2 only for the case of equal failure rates, but the approximation is remarkably accurate in this case. A computer run of 5000 evaluations, using random values of failure rates from a uniform distribution from 0 to 0.1 and repair rates from 0 to 1 showed a total range of error from 3.5% over-estimation to 5.2% under-estimation of the true value and a rms error of 0.73%. The approximation is therefore quite good enough for rough work in the early stages of system planning. It is useful because it allows studies to be made entirely in terms of availability, leaving detailed trade-offs between reliability and maintainability until later.
doi_str_mv 10.1109/TR.1984.5221896
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5221896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5221896</ieee_id><sourcerecordid>24492322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-857dabe992fccb5f89c3b80870ce4829325f10932421175d63e11e444e8d0b143</originalsourceid><addsrcrecordid>eNo9kE1rwzAMhs3YYN3HeYddctrNraXYjX0sZV9QKLTd2TiOzDLSpovdQf79UtrtJISeV0gPYw8gxgDCTDarMRgtxwoRtJlesBEopTkUCJdsJARobhSaa3YT49fQSmn0iMFyl6VPymY_rm5cWTd16rM2ZMDbQ-Jt4Jitk9tVZZ-t-5hoG-_YVXBNpPtzvWUfL8-b-RtfLF_f57MF94iYuFZF5UoyBoP3pQra-LzUQhfCk9RoclRhODtHiQCFqqY5AZCUknQlSpD5LXs67d137feBYrLbOnpqGrej9hAtDg9gjjiAkxPouzbGjoLdd_XWdb0FYY9q7GZlj2rsWc2QeDwlaiL6p_-mvycoXK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24492322</pqid></control><display><type>article</type><title>On the Availability of 1-out-of-2 Standby Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Sherwin, D. J.</creator><creatorcontrib>Sherwin, D. J.</creatorcontrib><description>The accuracy of the approximation (a1 +a2)/(1 + a1a2) for the availability of a 1-out-of-2:G standby system with unit availabilities a1, a2 is examined. The units have exponential failure and repair time distributions. The approximation is exact for equal repair rates. An expression is developed in terms of a1 and a2 only for the case of equal failure rates, but the approximation is remarkably accurate in this case. A computer run of 5000 evaluations, using random values of failure rates from a uniform distribution from 0 to 0.1 and repair rates from 0 to 1 showed a total range of error from 3.5% over-estimation to 5.2% under-estimation of the true value and a rms error of 0.73%. The approximation is therefore quite good enough for rough work in the early stages of system planning. It is useful because it allows studies to be made entirely in terms of availability, leaving detailed trade-offs between reliability and maintainability until later.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.1984.5221896</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Availability ; Computer errors ; Failure analysis ; Information analysis ; Maintenance ; Markov chain ; Matrices ; Probability ; Redundancy ; Reliability theory ; Standby redundancy ; Steady-state</subject><ispartof>IEEE transactions on reliability, 1984-12, Vol.R-33 (5), p.442-444</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-857dabe992fccb5f89c3b80870ce4829325f10932421175d63e11e444e8d0b143</citedby><cites>FETCH-LOGICAL-c222t-857dabe992fccb5f89c3b80870ce4829325f10932421175d63e11e444e8d0b143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5221896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5221896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sherwin, D. J.</creatorcontrib><title>On the Availability of 1-out-of-2 Standby Systems</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>The accuracy of the approximation (a1 +a2)/(1 + a1a2) for the availability of a 1-out-of-2:G standby system with unit availabilities a1, a2 is examined. The units have exponential failure and repair time distributions. The approximation is exact for equal repair rates. An expression is developed in terms of a1 and a2 only for the case of equal failure rates, but the approximation is remarkably accurate in this case. A computer run of 5000 evaluations, using random values of failure rates from a uniform distribution from 0 to 0.1 and repair rates from 0 to 1 showed a total range of error from 3.5% over-estimation to 5.2% under-estimation of the true value and a rms error of 0.73%. The approximation is therefore quite good enough for rough work in the early stages of system planning. It is useful because it allows studies to be made entirely in terms of availability, leaving detailed trade-offs between reliability and maintainability until later.</description><subject>Availability</subject><subject>Computer errors</subject><subject>Failure analysis</subject><subject>Information analysis</subject><subject>Maintenance</subject><subject>Markov chain</subject><subject>Matrices</subject><subject>Probability</subject><subject>Redundancy</subject><subject>Reliability theory</subject><subject>Standby redundancy</subject><subject>Steady-state</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rwzAMhs3YYN3HeYddctrNraXYjX0sZV9QKLTd2TiOzDLSpovdQf79UtrtJISeV0gPYw8gxgDCTDarMRgtxwoRtJlesBEopTkUCJdsJARobhSaa3YT49fQSmn0iMFyl6VPymY_rm5cWTd16rM2ZMDbQ-Jt4Jitk9tVZZ-t-5hoG-_YVXBNpPtzvWUfL8-b-RtfLF_f57MF94iYuFZF5UoyBoP3pQra-LzUQhfCk9RoclRhODtHiQCFqqY5AZCUknQlSpD5LXs67d137feBYrLbOnpqGrej9hAtDg9gjjiAkxPouzbGjoLdd_XWdb0FYY9q7GZlj2rsWc2QeDwlaiL6p_-mvycoXK4</recordid><startdate>198412</startdate><enddate>198412</enddate><creator>Sherwin, D. J.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>198412</creationdate><title>On the Availability of 1-out-of-2 Standby Systems</title><author>Sherwin, D. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-857dabe992fccb5f89c3b80870ce4829325f10932421175d63e11e444e8d0b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Availability</topic><topic>Computer errors</topic><topic>Failure analysis</topic><topic>Information analysis</topic><topic>Maintenance</topic><topic>Markov chain</topic><topic>Matrices</topic><topic>Probability</topic><topic>Redundancy</topic><topic>Reliability theory</topic><topic>Standby redundancy</topic><topic>Steady-state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherwin, D. J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sherwin, D. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Availability of 1-out-of-2 Standby Systems</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>1984-12</date><risdate>1984</risdate><volume>R-33</volume><issue>5</issue><spage>442</spage><epage>444</epage><pages>442-444</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>The accuracy of the approximation (a1 +a2)/(1 + a1a2) for the availability of a 1-out-of-2:G standby system with unit availabilities a1, a2 is examined. The units have exponential failure and repair time distributions. The approximation is exact for equal repair rates. An expression is developed in terms of a1 and a2 only for the case of equal failure rates, but the approximation is remarkably accurate in this case. A computer run of 5000 evaluations, using random values of failure rates from a uniform distribution from 0 to 0.1 and repair rates from 0 to 1 showed a total range of error from 3.5% over-estimation to 5.2% under-estimation of the true value and a rms error of 0.73%. The approximation is therefore quite good enough for rough work in the early stages of system planning. It is useful because it allows studies to be made entirely in terms of availability, leaving detailed trade-offs between reliability and maintainability until later.</abstract><pub>IEEE</pub><doi>10.1109/TR.1984.5221896</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 1984-12, Vol.R-33 (5), p.442-444
issn 0018-9529
1558-1721
language eng
recordid cdi_ieee_primary_5221896
source IEEE Electronic Library (IEL)
subjects Availability
Computer errors
Failure analysis
Information analysis
Maintenance
Markov chain
Matrices
Probability
Redundancy
Reliability theory
Standby redundancy
Steady-state
title On the Availability of 1-out-of-2 Standby Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Availability%20of%201-out-of-2%20Standby%20Systems&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Sherwin,%20D.%20J.&rft.date=1984-12&rft.volume=R-33&rft.issue=5&rft.spage=442&rft.epage=444&rft.pages=442-444&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.1984.5221896&rft_dat=%3Cproquest_RIE%3E24492322%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24492322&rft_id=info:pmid/&rft_ieee_id=5221896&rfr_iscdi=true