On the Availability of 1-out-of-2 Standby Systems
The accuracy of the approximation (a1 +a2)/(1 + a1a2) for the availability of a 1-out-of-2:G standby system with unit availabilities a1, a2 is examined. The units have exponential failure and repair time distributions. The approximation is exact for equal repair rates. An expression is developed in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 1984-12, Vol.R-33 (5), p.442-444 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 444 |
---|---|
container_issue | 5 |
container_start_page | 442 |
container_title | IEEE transactions on reliability |
container_volume | R-33 |
creator | Sherwin, D. J. |
description | The accuracy of the approximation (a1 +a2)/(1 + a1a2) for the availability of a 1-out-of-2:G standby system with unit availabilities a1, a2 is examined. The units have exponential failure and repair time distributions. The approximation is exact for equal repair rates. An expression is developed in terms of a1 and a2 only for the case of equal failure rates, but the approximation is remarkably accurate in this case. A computer run of 5000 evaluations, using random values of failure rates from a uniform distribution from 0 to 0.1 and repair rates from 0 to 1 showed a total range of error from 3.5% over-estimation to 5.2% under-estimation of the true value and a rms error of 0.73%. The approximation is therefore quite good enough for rough work in the early stages of system planning. It is useful because it allows studies to be made entirely in terms of availability, leaving detailed trade-offs between reliability and maintainability until later. |
doi_str_mv | 10.1109/TR.1984.5221896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5221896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5221896</ieee_id><sourcerecordid>24492322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-857dabe992fccb5f89c3b80870ce4829325f10932421175d63e11e444e8d0b143</originalsourceid><addsrcrecordid>eNo9kE1rwzAMhs3YYN3HeYddctrNraXYjX0sZV9QKLTd2TiOzDLSpovdQf79UtrtJISeV0gPYw8gxgDCTDarMRgtxwoRtJlesBEopTkUCJdsJARobhSaa3YT49fQSmn0iMFyl6VPymY_rm5cWTd16rM2ZMDbQ-Jt4Jitk9tVZZ-t-5hoG-_YVXBNpPtzvWUfL8-b-RtfLF_f57MF94iYuFZF5UoyBoP3pQra-LzUQhfCk9RoclRhODtHiQCFqqY5AZCUknQlSpD5LXs67d137feBYrLbOnpqGrej9hAtDg9gjjiAkxPouzbGjoLdd_XWdb0FYY9q7GZlj2rsWc2QeDwlaiL6p_-mvycoXK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24492322</pqid></control><display><type>article</type><title>On the Availability of 1-out-of-2 Standby Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Sherwin, D. J.</creator><creatorcontrib>Sherwin, D. J.</creatorcontrib><description>The accuracy of the approximation (a1 +a2)/(1 + a1a2) for the availability of a 1-out-of-2:G standby system with unit availabilities a1, a2 is examined. The units have exponential failure and repair time distributions. The approximation is exact for equal repair rates. An expression is developed in terms of a1 and a2 only for the case of equal failure rates, but the approximation is remarkably accurate in this case. A computer run of 5000 evaluations, using random values of failure rates from a uniform distribution from 0 to 0.1 and repair rates from 0 to 1 showed a total range of error from 3.5% over-estimation to 5.2% under-estimation of the true value and a rms error of 0.73%. The approximation is therefore quite good enough for rough work in the early stages of system planning. It is useful because it allows studies to be made entirely in terms of availability, leaving detailed trade-offs between reliability and maintainability until later.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.1984.5221896</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Availability ; Computer errors ; Failure analysis ; Information analysis ; Maintenance ; Markov chain ; Matrices ; Probability ; Redundancy ; Reliability theory ; Standby redundancy ; Steady-state</subject><ispartof>IEEE transactions on reliability, 1984-12, Vol.R-33 (5), p.442-444</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-857dabe992fccb5f89c3b80870ce4829325f10932421175d63e11e444e8d0b143</citedby><cites>FETCH-LOGICAL-c222t-857dabe992fccb5f89c3b80870ce4829325f10932421175d63e11e444e8d0b143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5221896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5221896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sherwin, D. J.</creatorcontrib><title>On the Availability of 1-out-of-2 Standby Systems</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>The accuracy of the approximation (a1 +a2)/(1 + a1a2) for the availability of a 1-out-of-2:G standby system with unit availabilities a1, a2 is examined. The units have exponential failure and repair time distributions. The approximation is exact for equal repair rates. An expression is developed in terms of a1 and a2 only for the case of equal failure rates, but the approximation is remarkably accurate in this case. A computer run of 5000 evaluations, using random values of failure rates from a uniform distribution from 0 to 0.1 and repair rates from 0 to 1 showed a total range of error from 3.5% over-estimation to 5.2% under-estimation of the true value and a rms error of 0.73%. The approximation is therefore quite good enough for rough work in the early stages of system planning. It is useful because it allows studies to be made entirely in terms of availability, leaving detailed trade-offs between reliability and maintainability until later.</description><subject>Availability</subject><subject>Computer errors</subject><subject>Failure analysis</subject><subject>Information analysis</subject><subject>Maintenance</subject><subject>Markov chain</subject><subject>Matrices</subject><subject>Probability</subject><subject>Redundancy</subject><subject>Reliability theory</subject><subject>Standby redundancy</subject><subject>Steady-state</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rwzAMhs3YYN3HeYddctrNraXYjX0sZV9QKLTd2TiOzDLSpovdQf79UtrtJISeV0gPYw8gxgDCTDarMRgtxwoRtJlesBEopTkUCJdsJARobhSaa3YT49fQSmn0iMFyl6VPymY_rm5cWTd16rM2ZMDbQ-Jt4Jitk9tVZZ-t-5hoG-_YVXBNpPtzvWUfL8-b-RtfLF_f57MF94iYuFZF5UoyBoP3pQra-LzUQhfCk9RoclRhODtHiQCFqqY5AZCUknQlSpD5LXs67d137feBYrLbOnpqGrej9hAtDg9gjjiAkxPouzbGjoLdd_XWdb0FYY9q7GZlj2rsWc2QeDwlaiL6p_-mvycoXK4</recordid><startdate>198412</startdate><enddate>198412</enddate><creator>Sherwin, D. J.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>198412</creationdate><title>On the Availability of 1-out-of-2 Standby Systems</title><author>Sherwin, D. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-857dabe992fccb5f89c3b80870ce4829325f10932421175d63e11e444e8d0b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Availability</topic><topic>Computer errors</topic><topic>Failure analysis</topic><topic>Information analysis</topic><topic>Maintenance</topic><topic>Markov chain</topic><topic>Matrices</topic><topic>Probability</topic><topic>Redundancy</topic><topic>Reliability theory</topic><topic>Standby redundancy</topic><topic>Steady-state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherwin, D. J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sherwin, D. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Availability of 1-out-of-2 Standby Systems</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>1984-12</date><risdate>1984</risdate><volume>R-33</volume><issue>5</issue><spage>442</spage><epage>444</epage><pages>442-444</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>The accuracy of the approximation (a1 +a2)/(1 + a1a2) for the availability of a 1-out-of-2:G standby system with unit availabilities a1, a2 is examined. The units have exponential failure and repair time distributions. The approximation is exact for equal repair rates. An expression is developed in terms of a1 and a2 only for the case of equal failure rates, but the approximation is remarkably accurate in this case. A computer run of 5000 evaluations, using random values of failure rates from a uniform distribution from 0 to 0.1 and repair rates from 0 to 1 showed a total range of error from 3.5% over-estimation to 5.2% under-estimation of the true value and a rms error of 0.73%. The approximation is therefore quite good enough for rough work in the early stages of system planning. It is useful because it allows studies to be made entirely in terms of availability, leaving detailed trade-offs between reliability and maintainability until later.</abstract><pub>IEEE</pub><doi>10.1109/TR.1984.5221896</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 1984-12, Vol.R-33 (5), p.442-444 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_ieee_primary_5221896 |
source | IEEE Electronic Library (IEL) |
subjects | Availability Computer errors Failure analysis Information analysis Maintenance Markov chain Matrices Probability Redundancy Reliability theory Standby redundancy Steady-state |
title | On the Availability of 1-out-of-2 Standby Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Availability%20of%201-out-of-2%20Standby%20Systems&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Sherwin,%20D.%20J.&rft.date=1984-12&rft.volume=R-33&rft.issue=5&rft.spage=442&rft.epage=444&rft.pages=442-444&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.1984.5221896&rft_dat=%3Cproquest_RIE%3E24492322%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24492322&rft_id=info:pmid/&rft_ieee_id=5221896&rfr_iscdi=true |