Peak detection in Hough transform via self-organizing learning
In this paper, we suggest a novel concept of applying the self-organizing map (SOM) in the Hough domain for a significant reduction of the Hough space. By using the SOM as the output space of the generalized Hough transform, the conventional 4-D Hough domain is replaced by a 10/spl times/10 map, org...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 vol.1 |
---|---|
container_issue | |
container_start_page | 139 |
container_title | |
container_volume | 1 |
creator | Choy, C.S.-T. Ser, P.-K. Siu, W.-C. |
description | In this paper, we suggest a novel concept of applying the self-organizing map (SOM) in the Hough domain for a significant reduction of the Hough space. By using the SOM as the output space of the generalized Hough transform, the conventional 4-D Hough domain is replaced by a 10/spl times/10 map, organized in a rectangular grid. Experimental results indicate high accuracy in voting is attainable despite its small memory requirement. |
doi_str_mv | 10.1109/ISCAS.1995.521470 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_521470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>521470</ieee_id><sourcerecordid>521470</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-4e07684d5e4b928e133bb6c3abfd5ebf731bb6e99ef5378f33c86e79224711e13</originalsourceid><addsrcrecordid>eNotT81KAzEYDIig1j6AnvICu-Z3k1yEsqgtFBTankuy_bJGt1lJVkGfvoE6l_lhGBiE7iipKSXmYbVpF5uaGiNryahQ5ALdEKUJZ1IRdoXmOX-QAiElb8w1enwD-4kPMEE3hTHiEPFy_O7f8ZRszH5MR_wTLM4w-GpMvY3hL8QeD2BTLOIWXXo7ZJj_8wztnp-27bJav76s2sW6CpSIqRJAVKPFQYJwhmmgnDvXdNw6XzLnFafFgzHgJVfac97pBpRhTChKS32G7s-7AQD2Xykcbfrdnx_yEx7mRuY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Peak detection in Hough transform via self-organizing learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Choy, C.S.-T. ; Ser, P.-K. ; Siu, W.-C.</creator><creatorcontrib>Choy, C.S.-T. ; Ser, P.-K. ; Siu, W.-C.</creatorcontrib><description>In this paper, we suggest a novel concept of applying the self-organizing map (SOM) in the Hough domain for a significant reduction of the Hough space. By using the SOM as the output space of the generalized Hough transform, the conventional 4-D Hough domain is replaced by a 10/spl times/10 map, organized in a rectangular grid. Experimental results indicate high accuracy in voting is attainable despite its small memory requirement.</description><identifier>ISBN: 0780325702</identifier><identifier>ISBN: 9780780325708</identifier><identifier>DOI: 10.1109/ISCAS.1995.521470</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analog circuits ; Costs ; Councils ; Feature extraction ; Genetic expression ; Neural networks ; Neurons ; Pixel ; Testing ; Voting</subject><ispartof>1995 IEEE International Symposium on Circuits and Systems (ISCAS), 1995, Vol.1, p.139-142 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/521470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/521470$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Choy, C.S.-T.</creatorcontrib><creatorcontrib>Ser, P.-K.</creatorcontrib><creatorcontrib>Siu, W.-C.</creatorcontrib><title>Peak detection in Hough transform via self-organizing learning</title><title>1995 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>In this paper, we suggest a novel concept of applying the self-organizing map (SOM) in the Hough domain for a significant reduction of the Hough space. By using the SOM as the output space of the generalized Hough transform, the conventional 4-D Hough domain is replaced by a 10/spl times/10 map, organized in a rectangular grid. Experimental results indicate high accuracy in voting is attainable despite its small memory requirement.</description><subject>Analog circuits</subject><subject>Costs</subject><subject>Councils</subject><subject>Feature extraction</subject><subject>Genetic expression</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Pixel</subject><subject>Testing</subject><subject>Voting</subject><isbn>0780325702</isbn><isbn>9780780325708</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT81KAzEYDIig1j6AnvICu-Z3k1yEsqgtFBTankuy_bJGt1lJVkGfvoE6l_lhGBiE7iipKSXmYbVpF5uaGiNryahQ5ALdEKUJZ1IRdoXmOX-QAiElb8w1enwD-4kPMEE3hTHiEPFy_O7f8ZRszH5MR_wTLM4w-GpMvY3hL8QeD2BTLOIWXXo7ZJj_8wztnp-27bJav76s2sW6CpSIqRJAVKPFQYJwhmmgnDvXdNw6XzLnFafFgzHgJVfac97pBpRhTChKS32G7s-7AQD2Xykcbfrdnx_yEx7mRuY</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Choy, C.S.-T.</creator><creator>Ser, P.-K.</creator><creator>Siu, W.-C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Peak detection in Hough transform via self-organizing learning</title><author>Choy, C.S.-T. ; Ser, P.-K. ; Siu, W.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-4e07684d5e4b928e133bb6c3abfd5ebf731bb6e99ef5378f33c86e79224711e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Analog circuits</topic><topic>Costs</topic><topic>Councils</topic><topic>Feature extraction</topic><topic>Genetic expression</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Pixel</topic><topic>Testing</topic><topic>Voting</topic><toplevel>online_resources</toplevel><creatorcontrib>Choy, C.S.-T.</creatorcontrib><creatorcontrib>Ser, P.-K.</creatorcontrib><creatorcontrib>Siu, W.-C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Choy, C.S.-T.</au><au>Ser, P.-K.</au><au>Siu, W.-C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Peak detection in Hough transform via self-organizing learning</atitle><btitle>1995 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>1995</date><risdate>1995</risdate><volume>1</volume><spage>139</spage><epage>142 vol.1</epage><pages>139-142 vol.1</pages><isbn>0780325702</isbn><isbn>9780780325708</isbn><abstract>In this paper, we suggest a novel concept of applying the self-organizing map (SOM) in the Hough domain for a significant reduction of the Hough space. By using the SOM as the output space of the generalized Hough transform, the conventional 4-D Hough domain is replaced by a 10/spl times/10 map, organized in a rectangular grid. Experimental results indicate high accuracy in voting is attainable despite its small memory requirement.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.1995.521470</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780325702 |
ispartof | 1995 IEEE International Symposium on Circuits and Systems (ISCAS), 1995, Vol.1, p.139-142 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_521470 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analog circuits Costs Councils Feature extraction Genetic expression Neural networks Neurons Pixel Testing Voting |
title | Peak detection in Hough transform via self-organizing learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Peak%20detection%20in%20Hough%20transform%20via%20self-organizing%20learning&rft.btitle=1995%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Choy,%20C.S.-T.&rft.date=1995&rft.volume=1&rft.spage=139&rft.epage=142%20vol.1&rft.pages=139-142%20vol.1&rft.isbn=0780325702&rft.isbn_list=9780780325708&rft_id=info:doi/10.1109/ISCAS.1995.521470&rft_dat=%3Cieee_6IE%3E521470%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=521470&rfr_iscdi=true |