Peak detection in Hough transform via self-organizing learning

In this paper, we suggest a novel concept of applying the self-organizing map (SOM) in the Hough domain for a significant reduction of the Hough space. By using the SOM as the output space of the generalized Hough transform, the conventional 4-D Hough domain is replaced by a 10/spl times/10 map, org...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Choy, C.S.-T., Ser, P.-K., Siu, W.-C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142 vol.1
container_issue
container_start_page 139
container_title
container_volume 1
creator Choy, C.S.-T.
Ser, P.-K.
Siu, W.-C.
description In this paper, we suggest a novel concept of applying the self-organizing map (SOM) in the Hough domain for a significant reduction of the Hough space. By using the SOM as the output space of the generalized Hough transform, the conventional 4-D Hough domain is replaced by a 10/spl times/10 map, organized in a rectangular grid. Experimental results indicate high accuracy in voting is attainable despite its small memory requirement.
doi_str_mv 10.1109/ISCAS.1995.521470
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_521470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>521470</ieee_id><sourcerecordid>521470</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-4e07684d5e4b928e133bb6c3abfd5ebf731bb6e99ef5378f33c86e79224711e13</originalsourceid><addsrcrecordid>eNotT81KAzEYDIig1j6AnvICu-Z3k1yEsqgtFBTankuy_bJGt1lJVkGfvoE6l_lhGBiE7iipKSXmYbVpF5uaGiNryahQ5ALdEKUJZ1IRdoXmOX-QAiElb8w1enwD-4kPMEE3hTHiEPFy_O7f8ZRszH5MR_wTLM4w-GpMvY3hL8QeD2BTLOIWXXo7ZJj_8wztnp-27bJav76s2sW6CpSIqRJAVKPFQYJwhmmgnDvXdNw6XzLnFafFgzHgJVfac97pBpRhTChKS32G7s-7AQD2Xykcbfrdnx_yEx7mRuY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Peak detection in Hough transform via self-organizing learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Choy, C.S.-T. ; Ser, P.-K. ; Siu, W.-C.</creator><creatorcontrib>Choy, C.S.-T. ; Ser, P.-K. ; Siu, W.-C.</creatorcontrib><description>In this paper, we suggest a novel concept of applying the self-organizing map (SOM) in the Hough domain for a significant reduction of the Hough space. By using the SOM as the output space of the generalized Hough transform, the conventional 4-D Hough domain is replaced by a 10/spl times/10 map, organized in a rectangular grid. Experimental results indicate high accuracy in voting is attainable despite its small memory requirement.</description><identifier>ISBN: 0780325702</identifier><identifier>ISBN: 9780780325708</identifier><identifier>DOI: 10.1109/ISCAS.1995.521470</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analog circuits ; Costs ; Councils ; Feature extraction ; Genetic expression ; Neural networks ; Neurons ; Pixel ; Testing ; Voting</subject><ispartof>1995 IEEE International Symposium on Circuits and Systems (ISCAS), 1995, Vol.1, p.139-142 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/521470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/521470$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Choy, C.S.-T.</creatorcontrib><creatorcontrib>Ser, P.-K.</creatorcontrib><creatorcontrib>Siu, W.-C.</creatorcontrib><title>Peak detection in Hough transform via self-organizing learning</title><title>1995 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>In this paper, we suggest a novel concept of applying the self-organizing map (SOM) in the Hough domain for a significant reduction of the Hough space. By using the SOM as the output space of the generalized Hough transform, the conventional 4-D Hough domain is replaced by a 10/spl times/10 map, organized in a rectangular grid. Experimental results indicate high accuracy in voting is attainable despite its small memory requirement.</description><subject>Analog circuits</subject><subject>Costs</subject><subject>Councils</subject><subject>Feature extraction</subject><subject>Genetic expression</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Pixel</subject><subject>Testing</subject><subject>Voting</subject><isbn>0780325702</isbn><isbn>9780780325708</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT81KAzEYDIig1j6AnvICu-Z3k1yEsqgtFBTankuy_bJGt1lJVkGfvoE6l_lhGBiE7iipKSXmYbVpF5uaGiNryahQ5ALdEKUJZ1IRdoXmOX-QAiElb8w1enwD-4kPMEE3hTHiEPFy_O7f8ZRszH5MR_wTLM4w-GpMvY3hL8QeD2BTLOIWXXo7ZJj_8wztnp-27bJav76s2sW6CpSIqRJAVKPFQYJwhmmgnDvXdNw6XzLnFafFgzHgJVfac97pBpRhTChKS32G7s-7AQD2Xykcbfrdnx_yEx7mRuY</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Choy, C.S.-T.</creator><creator>Ser, P.-K.</creator><creator>Siu, W.-C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Peak detection in Hough transform via self-organizing learning</title><author>Choy, C.S.-T. ; Ser, P.-K. ; Siu, W.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-4e07684d5e4b928e133bb6c3abfd5ebf731bb6e99ef5378f33c86e79224711e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Analog circuits</topic><topic>Costs</topic><topic>Councils</topic><topic>Feature extraction</topic><topic>Genetic expression</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Pixel</topic><topic>Testing</topic><topic>Voting</topic><toplevel>online_resources</toplevel><creatorcontrib>Choy, C.S.-T.</creatorcontrib><creatorcontrib>Ser, P.-K.</creatorcontrib><creatorcontrib>Siu, W.-C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Choy, C.S.-T.</au><au>Ser, P.-K.</au><au>Siu, W.-C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Peak detection in Hough transform via self-organizing learning</atitle><btitle>1995 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>1995</date><risdate>1995</risdate><volume>1</volume><spage>139</spage><epage>142 vol.1</epage><pages>139-142 vol.1</pages><isbn>0780325702</isbn><isbn>9780780325708</isbn><abstract>In this paper, we suggest a novel concept of applying the self-organizing map (SOM) in the Hough domain for a significant reduction of the Hough space. By using the SOM as the output space of the generalized Hough transform, the conventional 4-D Hough domain is replaced by a 10/spl times/10 map, organized in a rectangular grid. Experimental results indicate high accuracy in voting is attainable despite its small memory requirement.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.1995.521470</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780325702
ispartof 1995 IEEE International Symposium on Circuits and Systems (ISCAS), 1995, Vol.1, p.139-142 vol.1
issn
language eng
recordid cdi_ieee_primary_521470
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analog circuits
Costs
Councils
Feature extraction
Genetic expression
Neural networks
Neurons
Pixel
Testing
Voting
title Peak detection in Hough transform via self-organizing learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Peak%20detection%20in%20Hough%20transform%20via%20self-organizing%20learning&rft.btitle=1995%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Choy,%20C.S.-T.&rft.date=1995&rft.volume=1&rft.spage=139&rft.epage=142%20vol.1&rft.pages=139-142%20vol.1&rft.isbn=0780325702&rft.isbn_list=9780780325708&rft_id=info:doi/10.1109/ISCAS.1995.521470&rft_dat=%3Cieee_6IE%3E521470%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=521470&rfr_iscdi=true