A fast matching algorithm with an adaptive window based on quasi-dense method

This paper presents a fast quasi-dense matching algorithm using an adaptive window. The algorithm starts from a set of sparse seed matches, and then propagates to the neighboring pixels; finally the most points in the images are matched. During computing the normalized cross correlation (NCC), an ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guo-Zun Men, Jia-Li Chai, Jie Zhao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1646
container_issue
container_start_page 1641
container_title
container_volume 3
creator Guo-Zun Men
Jia-Li Chai
Jie Zhao
description This paper presents a fast quasi-dense matching algorithm using an adaptive window. The algorithm starts from a set of sparse seed matches, and then propagates to the neighboring pixels; finally the most points in the images are matched. During computing the normalized cross correlation (NCC), an additional level of incremental calculation is proposed to achieve further speed-up. The confidence coefficient is introduced and the search window is varied in inverse proportion to it. The algorithm has been tested with stereo images and the results demonstrate its accuracy and efficiency. The algorithm also can be applied to a wide range of image pairs including those with large disparity or without rectification even if part of the images is less textured. In particular, with big images and a large disparity range our algorithm turns out to be significantly faster.
doi_str_mv 10.1109/ICMLC.2009.5212272
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5212272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5212272</ieee_id><sourcerecordid>5212272</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-49526920cf14f7aa8bd7efa72d54e8c41ede84e242ff0a551c25c47dbe04be9d3</originalsourceid><addsrcrecordid>eNo1UMtOwzAQNIJKtKU_ABf_QIq9tuv4WEU8KqXiAhK3ahOvW6MmKXWg4u-JRJnDjGakXY2GsVsp5lIKd78q1mUxByHc3IAEsHDBJlKD1soKBZds5mz-70FdsTHIhcikUu8jNhnucielM3DNZil9iAHagF2oMVsvecDU8wb7ehfbLcf9tjvGftfw08AcW44eD338piFofXfiFSbyvGv55xemmHlqE_GG-l3nb9go4D7R7KxT9vb48Fo8Z-XL06pYllmU1vSZHqosHIg6SB0sYl55SwEteKMpr7UkT7km0BCCQGNkDabW1lckdEXOqym7-_sbiWhzOMYGjz-b8zTqFzqjU8o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fast matching algorithm with an adaptive window based on quasi-dense method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guo-Zun Men ; Jia-Li Chai ; Jie Zhao</creator><creatorcontrib>Guo-Zun Men ; Jia-Li Chai ; Jie Zhao</creatorcontrib><description>This paper presents a fast quasi-dense matching algorithm using an adaptive window. The algorithm starts from a set of sparse seed matches, and then propagates to the neighboring pixels; finally the most points in the images are matched. During computing the normalized cross correlation (NCC), an additional level of incremental calculation is proposed to achieve further speed-up. The confidence coefficient is introduced and the search window is varied in inverse proportion to it. The algorithm has been tested with stereo images and the results demonstrate its accuracy and efficiency. The algorithm also can be applied to a wide range of image pairs including those with large disparity or without rectification even if part of the images is less textured. In particular, with big images and a large disparity range our algorithm turns out to be significantly faster.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 9781424437023</identifier><identifier>ISBN: 1424437024</identifier><identifier>EISBN: 1424437032</identifier><identifier>EISBN: 9781424437030</identifier><identifier>DOI: 10.1109/ICMLC.2009.5212272</identifier><identifier>LCCN: 2008911952</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive Window and Quasi-Dense Matching ; Application software ; Computer vision ; Confidence Coefficient ; Cybernetics ; Educational institutions ; Incremental Computation ; Machine learning ; Machine learning algorithms ; Normalized Cross Correlation ; Optimization methods ; Pixel ; Stereo vision ; Testing</subject><ispartof>2009 International Conference on Machine Learning and Cybernetics, 2009, Vol.3, p.1641-1646</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5212272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5212272$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo-Zun Men</creatorcontrib><creatorcontrib>Jia-Li Chai</creatorcontrib><creatorcontrib>Jie Zhao</creatorcontrib><title>A fast matching algorithm with an adaptive window based on quasi-dense method</title><title>2009 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>This paper presents a fast quasi-dense matching algorithm using an adaptive window. The algorithm starts from a set of sparse seed matches, and then propagates to the neighboring pixels; finally the most points in the images are matched. During computing the normalized cross correlation (NCC), an additional level of incremental calculation is proposed to achieve further speed-up. The confidence coefficient is introduced and the search window is varied in inverse proportion to it. The algorithm has been tested with stereo images and the results demonstrate its accuracy and efficiency. The algorithm also can be applied to a wide range of image pairs including those with large disparity or without rectification even if part of the images is less textured. In particular, with big images and a large disparity range our algorithm turns out to be significantly faster.</description><subject>Adaptive Window and Quasi-Dense Matching</subject><subject>Application software</subject><subject>Computer vision</subject><subject>Confidence Coefficient</subject><subject>Cybernetics</subject><subject>Educational institutions</subject><subject>Incremental Computation</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Normalized Cross Correlation</subject><subject>Optimization methods</subject><subject>Pixel</subject><subject>Stereo vision</subject><subject>Testing</subject><issn>2160-133X</issn><isbn>9781424437023</isbn><isbn>1424437024</isbn><isbn>1424437032</isbn><isbn>9781424437030</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtOwzAQNIJKtKU_ABf_QIq9tuv4WEU8KqXiAhK3ahOvW6MmKXWg4u-JRJnDjGakXY2GsVsp5lIKd78q1mUxByHc3IAEsHDBJlKD1soKBZds5mz-70FdsTHIhcikUu8jNhnucielM3DNZil9iAHagF2oMVsvecDU8wb7ehfbLcf9tjvGftfw08AcW44eD338piFofXfiFSbyvGv55xemmHlqE_GG-l3nb9go4D7R7KxT9vb48Fo8Z-XL06pYllmU1vSZHqosHIg6SB0sYl55SwEteKMpr7UkT7km0BCCQGNkDabW1lckdEXOqym7-_sbiWhzOMYGjz-b8zTqFzqjU8o</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Guo-Zun Men</creator><creator>Jia-Li Chai</creator><creator>Jie Zhao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>A fast matching algorithm with an adaptive window based on quasi-dense method</title><author>Guo-Zun Men ; Jia-Li Chai ; Jie Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-49526920cf14f7aa8bd7efa72d54e8c41ede84e242ff0a551c25c47dbe04be9d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive Window and Quasi-Dense Matching</topic><topic>Application software</topic><topic>Computer vision</topic><topic>Confidence Coefficient</topic><topic>Cybernetics</topic><topic>Educational institutions</topic><topic>Incremental Computation</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Normalized Cross Correlation</topic><topic>Optimization methods</topic><topic>Pixel</topic><topic>Stereo vision</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo-Zun Men</creatorcontrib><creatorcontrib>Jia-Li Chai</creatorcontrib><creatorcontrib>Jie Zhao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo-Zun Men</au><au>Jia-Li Chai</au><au>Jie Zhao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fast matching algorithm with an adaptive window based on quasi-dense method</atitle><btitle>2009 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2009-07</date><risdate>2009</risdate><volume>3</volume><spage>1641</spage><epage>1646</epage><pages>1641-1646</pages><issn>2160-133X</issn><isbn>9781424437023</isbn><isbn>1424437024</isbn><eisbn>1424437032</eisbn><eisbn>9781424437030</eisbn><abstract>This paper presents a fast quasi-dense matching algorithm using an adaptive window. The algorithm starts from a set of sparse seed matches, and then propagates to the neighboring pixels; finally the most points in the images are matched. During computing the normalized cross correlation (NCC), an additional level of incremental calculation is proposed to achieve further speed-up. The confidence coefficient is introduced and the search window is varied in inverse proportion to it. The algorithm has been tested with stereo images and the results demonstrate its accuracy and efficiency. The algorithm also can be applied to a wide range of image pairs including those with large disparity or without rectification even if part of the images is less textured. In particular, with big images and a large disparity range our algorithm turns out to be significantly faster.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2009.5212272</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2009 International Conference on Machine Learning and Cybernetics, 2009, Vol.3, p.1641-1646
issn 2160-133X
language eng
recordid cdi_ieee_primary_5212272
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive Window and Quasi-Dense Matching
Application software
Computer vision
Confidence Coefficient
Cybernetics
Educational institutions
Incremental Computation
Machine learning
Machine learning algorithms
Normalized Cross Correlation
Optimization methods
Pixel
Stereo vision
Testing
title A fast matching algorithm with an adaptive window based on quasi-dense method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A17%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fast%20matching%20algorithm%20with%20an%20adaptive%20window%20based%20on%20quasi-dense%20method&rft.btitle=2009%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Guo-Zun%20Men&rft.date=2009-07&rft.volume=3&rft.spage=1641&rft.epage=1646&rft.pages=1641-1646&rft.issn=2160-133X&rft.isbn=9781424437023&rft.isbn_list=1424437024&rft_id=info:doi/10.1109/ICMLC.2009.5212272&rft_dat=%3Cieee_6IE%3E5212272%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424437032&rft.eisbn_list=9781424437030&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5212272&rfr_iscdi=true