Classification of urban areas in multi-date ERS-1 images using structural features and a neural network
Describes a new method to extract structural informations from images. The loss of spatial resolution and distortions-from edges, as it occurs with standard texture algorithms, are reduced to a minimum. Furthermore, the authors describe the inhomogeneity by three different structure types according...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 903 vol.2 |
---|---|
container_issue | |
container_start_page | 901 |
container_title | |
container_volume | 2 |
creator | Hagg, W. Segl, K. Sties, M. |
description | Describes a new method to extract structural informations from images. The loss of spatial resolution and distortions-from edges, as it occurs with standard texture algorithms, are reduced to a minimum. Furthermore, the authors describe the inhomogeneity by three different structure types according to the structures contained in SAR images. Finally they use a neural network (RBF-Network) to get a more precise classification of urban areas from SAR images. |
doi_str_mv | 10.1109/IGARSS.1995.521091 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_521091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>521091</ieee_id><sourcerecordid>521091</sourcerecordid><originalsourceid>FETCH-LOGICAL-i631-f76b416561e2fe18c2c4128d82c17b4895f82312addec10d5873cbd5157b74f93</originalsourceid><addsrcrecordid>eNotUMFqwzAUM4zBtq4_0JN_IF2eHcfOsZSuKxQGTe_lxX4u3lJ32Aljf7-wThcJCYQQYwsolwBl87Lbrg5tu4SmUUslJgfu2FOpTSmFqrV4YPOcP8oJlVKyqh_Zed1jzsEHi0O4Rn71fEwdRo6JMPMQ-WXsh1A4HIhvDm0BPFzwTJmPOcQzz0Ma7TAm7LknnMSUYHQceaQ_N9LwfU2fz-zeY59p_s8zdnzdHNdvxf59u1uv9kWoJRRe110FtaqBhCcwVtgKhHFGWNBdZRrljZAg0DmyUDpltLSdU6B0pyvfyBlb3GoDEZ2-0rQ1_ZxuT8hfQ_ZVDQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Classification of urban areas in multi-date ERS-1 images using structural features and a neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hagg, W. ; Segl, K. ; Sties, M.</creator><creatorcontrib>Hagg, W. ; Segl, K. ; Sties, M.</creatorcontrib><description>Describes a new method to extract structural informations from images. The loss of spatial resolution and distortions-from edges, as it occurs with standard texture algorithms, are reduced to a minimum. Furthermore, the authors describe the inhomogeneity by three different structure types according to the structures contained in SAR images. Finally they use a neural network (RBF-Network) to get a more precise classification of urban areas from SAR images.</description><identifier>ISBN: 0780325672</identifier><identifier>ISBN: 9780780325678</identifier><identifier>DOI: 10.1109/IGARSS.1995.521091</identifier><language>eng</language><publisher>IEEE</publisher><subject>Area measurement ; Data mining ; Distortion measurement ; Feature extraction ; Image resolution ; Loss measurement ; Neural networks ; Radial basis function networks ; Spatial resolution ; Urban areas</subject><ispartof>1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications, 1995, Vol.2, p.901-903 vol.2</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/521091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,4052,4053,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/521091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hagg, W.</creatorcontrib><creatorcontrib>Segl, K.</creatorcontrib><creatorcontrib>Sties, M.</creatorcontrib><title>Classification of urban areas in multi-date ERS-1 images using structural features and a neural network</title><title>1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications</title><addtitle>IGARSS</addtitle><description>Describes a new method to extract structural informations from images. The loss of spatial resolution and distortions-from edges, as it occurs with standard texture algorithms, are reduced to a minimum. Furthermore, the authors describe the inhomogeneity by three different structure types according to the structures contained in SAR images. Finally they use a neural network (RBF-Network) to get a more precise classification of urban areas from SAR images.</description><subject>Area measurement</subject><subject>Data mining</subject><subject>Distortion measurement</subject><subject>Feature extraction</subject><subject>Image resolution</subject><subject>Loss measurement</subject><subject>Neural networks</subject><subject>Radial basis function networks</subject><subject>Spatial resolution</subject><subject>Urban areas</subject><isbn>0780325672</isbn><isbn>9780780325678</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMFqwzAUM4zBtq4_0JN_IF2eHcfOsZSuKxQGTe_lxX4u3lJ32Aljf7-wThcJCYQQYwsolwBl87Lbrg5tu4SmUUslJgfu2FOpTSmFqrV4YPOcP8oJlVKyqh_Zed1jzsEHi0O4Rn71fEwdRo6JMPMQ-WXsh1A4HIhvDm0BPFzwTJmPOcQzz0Ma7TAm7LknnMSUYHQceaQ_N9LwfU2fz-zeY59p_s8zdnzdHNdvxf59u1uv9kWoJRRe110FtaqBhCcwVtgKhHFGWNBdZRrljZAg0DmyUDpltLSdU6B0pyvfyBlb3GoDEZ2-0rQ1_ZxuT8hfQ_ZVDQ</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Hagg, W.</creator><creator>Segl, K.</creator><creator>Sties, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Classification of urban areas in multi-date ERS-1 images using structural features and a neural network</title><author>Hagg, W. ; Segl, K. ; Sties, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i631-f76b416561e2fe18c2c4128d82c17b4895f82312addec10d5873cbd5157b74f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Area measurement</topic><topic>Data mining</topic><topic>Distortion measurement</topic><topic>Feature extraction</topic><topic>Image resolution</topic><topic>Loss measurement</topic><topic>Neural networks</topic><topic>Radial basis function networks</topic><topic>Spatial resolution</topic><topic>Urban areas</topic><toplevel>online_resources</toplevel><creatorcontrib>Hagg, W.</creatorcontrib><creatorcontrib>Segl, K.</creatorcontrib><creatorcontrib>Sties, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hagg, W.</au><au>Segl, K.</au><au>Sties, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of urban areas in multi-date ERS-1 images using structural features and a neural network</atitle><btitle>1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications</btitle><stitle>IGARSS</stitle><date>1995</date><risdate>1995</risdate><volume>2</volume><spage>901</spage><epage>903 vol.2</epage><pages>901-903 vol.2</pages><isbn>0780325672</isbn><isbn>9780780325678</isbn><abstract>Describes a new method to extract structural informations from images. The loss of spatial resolution and distortions-from edges, as it occurs with standard texture algorithms, are reduced to a minimum. Furthermore, the authors describe the inhomogeneity by three different structure types according to the structures contained in SAR images. Finally they use a neural network (RBF-Network) to get a more precise classification of urban areas from SAR images.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.1995.521091</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780325672 |
ispartof | 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications, 1995, Vol.2, p.901-903 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_521091 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Area measurement Data mining Distortion measurement Feature extraction Image resolution Loss measurement Neural networks Radial basis function networks Spatial resolution Urban areas |
title | Classification of urban areas in multi-date ERS-1 images using structural features and a neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20urban%20areas%20in%20multi-date%20ERS-1%20images%20using%20structural%20features%20and%20a%20neural%20network&rft.btitle=1995%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium,%20IGARSS%20'95.%20Quantitative%20Remote%20Sensing%20for%20Science%20and%20Applications&rft.au=Hagg,%20W.&rft.date=1995&rft.volume=2&rft.spage=901&rft.epage=903%20vol.2&rft.pages=901-903%20vol.2&rft.isbn=0780325672&rft.isbn_list=9780780325678&rft_id=info:doi/10.1109/IGARSS.1995.521091&rft_dat=%3Cieee_6IE%3E521091%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=521091&rfr_iscdi=true |