Classification of urban areas in multi-date ERS-1 images using structural features and a neural network

Describes a new method to extract structural informations from images. The loss of spatial resolution and distortions-from edges, as it occurs with standard texture algorithms, are reduced to a minimum. Furthermore, the authors describe the inhomogeneity by three different structure types according...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hagg, W., Segl, K., Sties, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 903 vol.2
container_issue
container_start_page 901
container_title
container_volume 2
creator Hagg, W.
Segl, K.
Sties, M.
description Describes a new method to extract structural informations from images. The loss of spatial resolution and distortions-from edges, as it occurs with standard texture algorithms, are reduced to a minimum. Furthermore, the authors describe the inhomogeneity by three different structure types according to the structures contained in SAR images. Finally they use a neural network (RBF-Network) to get a more precise classification of urban areas from SAR images.
doi_str_mv 10.1109/IGARSS.1995.521091
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_521091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>521091</ieee_id><sourcerecordid>521091</sourcerecordid><originalsourceid>FETCH-LOGICAL-i631-f76b416561e2fe18c2c4128d82c17b4895f82312addec10d5873cbd5157b74f93</originalsourceid><addsrcrecordid>eNotUMFqwzAUM4zBtq4_0JN_IF2eHcfOsZSuKxQGTe_lxX4u3lJ32Aljf7-wThcJCYQQYwsolwBl87Lbrg5tu4SmUUslJgfu2FOpTSmFqrV4YPOcP8oJlVKyqh_Zed1jzsEHi0O4Rn71fEwdRo6JMPMQ-WXsh1A4HIhvDm0BPFzwTJmPOcQzz0Ma7TAm7LknnMSUYHQceaQ_N9LwfU2fz-zeY59p_s8zdnzdHNdvxf59u1uv9kWoJRRe110FtaqBhCcwVtgKhHFGWNBdZRrljZAg0DmyUDpltLSdU6B0pyvfyBlb3GoDEZ2-0rQ1_ZxuT8hfQ_ZVDQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Classification of urban areas in multi-date ERS-1 images using structural features and a neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hagg, W. ; Segl, K. ; Sties, M.</creator><creatorcontrib>Hagg, W. ; Segl, K. ; Sties, M.</creatorcontrib><description>Describes a new method to extract structural informations from images. The loss of spatial resolution and distortions-from edges, as it occurs with standard texture algorithms, are reduced to a minimum. Furthermore, the authors describe the inhomogeneity by three different structure types according to the structures contained in SAR images. Finally they use a neural network (RBF-Network) to get a more precise classification of urban areas from SAR images.</description><identifier>ISBN: 0780325672</identifier><identifier>ISBN: 9780780325678</identifier><identifier>DOI: 10.1109/IGARSS.1995.521091</identifier><language>eng</language><publisher>IEEE</publisher><subject>Area measurement ; Data mining ; Distortion measurement ; Feature extraction ; Image resolution ; Loss measurement ; Neural networks ; Radial basis function networks ; Spatial resolution ; Urban areas</subject><ispartof>1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications, 1995, Vol.2, p.901-903 vol.2</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/521091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,4052,4053,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/521091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hagg, W.</creatorcontrib><creatorcontrib>Segl, K.</creatorcontrib><creatorcontrib>Sties, M.</creatorcontrib><title>Classification of urban areas in multi-date ERS-1 images using structural features and a neural network</title><title>1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications</title><addtitle>IGARSS</addtitle><description>Describes a new method to extract structural informations from images. The loss of spatial resolution and distortions-from edges, as it occurs with standard texture algorithms, are reduced to a minimum. Furthermore, the authors describe the inhomogeneity by three different structure types according to the structures contained in SAR images. Finally they use a neural network (RBF-Network) to get a more precise classification of urban areas from SAR images.</description><subject>Area measurement</subject><subject>Data mining</subject><subject>Distortion measurement</subject><subject>Feature extraction</subject><subject>Image resolution</subject><subject>Loss measurement</subject><subject>Neural networks</subject><subject>Radial basis function networks</subject><subject>Spatial resolution</subject><subject>Urban areas</subject><isbn>0780325672</isbn><isbn>9780780325678</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMFqwzAUM4zBtq4_0JN_IF2eHcfOsZSuKxQGTe_lxX4u3lJ32Aljf7-wThcJCYQQYwsolwBl87Lbrg5tu4SmUUslJgfu2FOpTSmFqrV4YPOcP8oJlVKyqh_Zed1jzsEHi0O4Rn71fEwdRo6JMPMQ-WXsh1A4HIhvDm0BPFzwTJmPOcQzz0Ma7TAm7LknnMSUYHQceaQ_N9LwfU2fz-zeY59p_s8zdnzdHNdvxf59u1uv9kWoJRRe110FtaqBhCcwVtgKhHFGWNBdZRrljZAg0DmyUDpltLSdU6B0pyvfyBlb3GoDEZ2-0rQ1_ZxuT8hfQ_ZVDQ</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Hagg, W.</creator><creator>Segl, K.</creator><creator>Sties, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Classification of urban areas in multi-date ERS-1 images using structural features and a neural network</title><author>Hagg, W. ; Segl, K. ; Sties, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i631-f76b416561e2fe18c2c4128d82c17b4895f82312addec10d5873cbd5157b74f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Area measurement</topic><topic>Data mining</topic><topic>Distortion measurement</topic><topic>Feature extraction</topic><topic>Image resolution</topic><topic>Loss measurement</topic><topic>Neural networks</topic><topic>Radial basis function networks</topic><topic>Spatial resolution</topic><topic>Urban areas</topic><toplevel>online_resources</toplevel><creatorcontrib>Hagg, W.</creatorcontrib><creatorcontrib>Segl, K.</creatorcontrib><creatorcontrib>Sties, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hagg, W.</au><au>Segl, K.</au><au>Sties, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of urban areas in multi-date ERS-1 images using structural features and a neural network</atitle><btitle>1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications</btitle><stitle>IGARSS</stitle><date>1995</date><risdate>1995</risdate><volume>2</volume><spage>901</spage><epage>903 vol.2</epage><pages>901-903 vol.2</pages><isbn>0780325672</isbn><isbn>9780780325678</isbn><abstract>Describes a new method to extract structural informations from images. The loss of spatial resolution and distortions-from edges, as it occurs with standard texture algorithms, are reduced to a minimum. Furthermore, the authors describe the inhomogeneity by three different structure types according to the structures contained in SAR images. Finally they use a neural network (RBF-Network) to get a more precise classification of urban areas from SAR images.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.1995.521091</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780325672
ispartof 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications, 1995, Vol.2, p.901-903 vol.2
issn
language eng
recordid cdi_ieee_primary_521091
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Area measurement
Data mining
Distortion measurement
Feature extraction
Image resolution
Loss measurement
Neural networks
Radial basis function networks
Spatial resolution
Urban areas
title Classification of urban areas in multi-date ERS-1 images using structural features and a neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20urban%20areas%20in%20multi-date%20ERS-1%20images%20using%20structural%20features%20and%20a%20neural%20network&rft.btitle=1995%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium,%20IGARSS%20'95.%20Quantitative%20Remote%20Sensing%20for%20Science%20and%20Applications&rft.au=Hagg,%20W.&rft.date=1995&rft.volume=2&rft.spage=901&rft.epage=903%20vol.2&rft.pages=901-903%20vol.2&rft.isbn=0780325672&rft.isbn_list=9780780325678&rft_id=info:doi/10.1109/IGARSS.1995.521091&rft_dat=%3Cieee_6IE%3E521091%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=521091&rfr_iscdi=true