Data mining in electronics packaging

In this paper the most common methods of data mining have been investigated and their application in electronics will be reflected. The current developments are systematized by the type of the used techniques. Therefore, a comprehensive literature review of data mining in electronics has been accomp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Meyer, S., Wohlrabe, H., Wolter, K.-J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Meyer, S.
Wohlrabe, H.
Wolter, K.-J.
description In this paper the most common methods of data mining have been investigated and their application in electronics will be reflected. The current developments are systematized by the type of the used techniques. Therefore, a comprehensive literature review of data mining in electronics has been accomplished. The paper describes the usage of data mining in defect cause analysis, effects of process parameter for quality, deployment of equipment and maintenance. Examples of data mining applications in the literature have been summarized. A comprehensive experimental setup was the basis for the investigation on the effects on void generation. Statistical analysis and data mining techniques were used to identify the main causes for voids. The data file encompasses materials, suppliers, process parameters and inspection results. For a detailed analysis the x-ray inspection data of voids has been clustered into groups according to the dedicated package type. Finally, a neural network approach is applied to the experimental data and the model results are discussed.
doi_str_mv 10.1109/ISSE.2009.5206930
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5206930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5206930</ieee_id><sourcerecordid>5206930</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5463e986119bea2fad8bf6463cb474ebcf5a01b25c1b5361e0d8c5341d26ce2e3</originalsourceid><addsrcrecordid>eNotj0tLw0AUhS9owb5-QHGThdvEe-88kllKbbVQcNHuy8zkpoy2sSTZ-O-t2NWB8x0-OAALwoII3fNmt1sVjOgKw2idwjuYu7IizVprtljew5jJUs6GqxFM_qYOGdk8wKTvPxGNUkxjeHr1g8_OqU3tMUttJieJQ_fdpthnFx-__PEKZjBq_KmX-S2nsF-v9sv3fPvxtlm-bPPkcMiNtkpcZYlcEM-Nr6vQ2GsZgy61hNgYjxTYRApGWRKsq2iUppptFBY1hcd_bRKRw6VLZ9_9HG4H1S-uJkEI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data mining in electronics packaging</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Meyer, S. ; Wohlrabe, H. ; Wolter, K.-J.</creator><creatorcontrib>Meyer, S. ; Wohlrabe, H. ; Wolter, K.-J.</creatorcontrib><description>In this paper the most common methods of data mining have been investigated and their application in electronics will be reflected. The current developments are systematized by the type of the used techniques. Therefore, a comprehensive literature review of data mining in electronics has been accomplished. The paper describes the usage of data mining in defect cause analysis, effects of process parameter for quality, deployment of equipment and maintenance. Examples of data mining applications in the literature have been summarized. A comprehensive experimental setup was the basis for the investigation on the effects on void generation. Statistical analysis and data mining techniques were used to identify the main causes for voids. The data file encompasses materials, suppliers, process parameters and inspection results. For a detailed analysis the x-ray inspection data of voids has been clustered into groups according to the dedicated package type. Finally, a neural network approach is applied to the experimental data and the model results are discussed.</description><identifier>ISSN: 2161-2528</identifier><identifier>ISBN: 9781424442607</identifier><identifier>ISBN: 1424442605</identifier><identifier>DOI: 10.1109/ISSE.2009.5206930</identifier><identifier>LCCN: 2009902025</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Data analysis ; Data mining ; Electronics packaging ; Inspection ; Lead ; Manufacturing ; Neural networks ; Predictive models ; Printing</subject><ispartof>2009 32nd International Spring Seminar on Electronics Technology, 2009, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5206930$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5206930$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meyer, S.</creatorcontrib><creatorcontrib>Wohlrabe, H.</creatorcontrib><creatorcontrib>Wolter, K.-J.</creatorcontrib><title>Data mining in electronics packaging</title><title>2009 32nd International Spring Seminar on Electronics Technology</title><addtitle>ISSE</addtitle><description>In this paper the most common methods of data mining have been investigated and their application in electronics will be reflected. The current developments are systematized by the type of the used techniques. Therefore, a comprehensive literature review of data mining in electronics has been accomplished. The paper describes the usage of data mining in defect cause analysis, effects of process parameter for quality, deployment of equipment and maintenance. Examples of data mining applications in the literature have been summarized. A comprehensive experimental setup was the basis for the investigation on the effects on void generation. Statistical analysis and data mining techniques were used to identify the main causes for voids. The data file encompasses materials, suppliers, process parameters and inspection results. For a detailed analysis the x-ray inspection data of voids has been clustered into groups according to the dedicated package type. Finally, a neural network approach is applied to the experimental data and the model results are discussed.</description><subject>Artificial intelligence</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Electronics packaging</subject><subject>Inspection</subject><subject>Lead</subject><subject>Manufacturing</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Printing</subject><issn>2161-2528</issn><isbn>9781424442607</isbn><isbn>1424442605</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLw0AUhS9owb5-QHGThdvEe-88kllKbbVQcNHuy8zkpoy2sSTZ-O-t2NWB8x0-OAALwoII3fNmt1sVjOgKw2idwjuYu7IizVprtljew5jJUs6GqxFM_qYOGdk8wKTvPxGNUkxjeHr1g8_OqU3tMUttJieJQ_fdpthnFx-__PEKZjBq_KmX-S2nsF-v9sv3fPvxtlm-bPPkcMiNtkpcZYlcEM-Nr6vQ2GsZgy61hNgYjxTYRApGWRKsq2iUppptFBY1hcd_bRKRw6VLZ9_9HG4H1S-uJkEI</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Meyer, S.</creator><creator>Wohlrabe, H.</creator><creator>Wolter, K.-J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>Data mining in electronics packaging</title><author>Meyer, S. ; Wohlrabe, H. ; Wolter, K.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5463e986119bea2fad8bf6463cb474ebcf5a01b25c1b5361e0d8c5341d26ce2e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial intelligence</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Electronics packaging</topic><topic>Inspection</topic><topic>Lead</topic><topic>Manufacturing</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Printing</topic><toplevel>online_resources</toplevel><creatorcontrib>Meyer, S.</creatorcontrib><creatorcontrib>Wohlrabe, H.</creatorcontrib><creatorcontrib>Wolter, K.-J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meyer, S.</au><au>Wohlrabe, H.</au><au>Wolter, K.-J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data mining in electronics packaging</atitle><btitle>2009 32nd International Spring Seminar on Electronics Technology</btitle><stitle>ISSE</stitle><date>2009-05</date><risdate>2009</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2161-2528</issn><isbn>9781424442607</isbn><isbn>1424442605</isbn><abstract>In this paper the most common methods of data mining have been investigated and their application in electronics will be reflected. The current developments are systematized by the type of the used techniques. Therefore, a comprehensive literature review of data mining in electronics has been accomplished. The paper describes the usage of data mining in defect cause analysis, effects of process parameter for quality, deployment of equipment and maintenance. Examples of data mining applications in the literature have been summarized. A comprehensive experimental setup was the basis for the investigation on the effects on void generation. Statistical analysis and data mining techniques were used to identify the main causes for voids. The data file encompasses materials, suppliers, process parameters and inspection results. For a detailed analysis the x-ray inspection data of voids has been clustered into groups according to the dedicated package type. Finally, a neural network approach is applied to the experimental data and the model results are discussed.</abstract><pub>IEEE</pub><doi>10.1109/ISSE.2009.5206930</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-2528
ispartof 2009 32nd International Spring Seminar on Electronics Technology, 2009, p.1-7
issn 2161-2528
language eng
recordid cdi_ieee_primary_5206930
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Data analysis
Data mining
Electronics packaging
Inspection
Lead
Manufacturing
Neural networks
Predictive models
Printing
title Data mining in electronics packaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data%20mining%20in%20electronics%20packaging&rft.btitle=2009%2032nd%20International%20Spring%20Seminar%20on%20Electronics%20Technology&rft.au=Meyer,%20S.&rft.date=2009-05&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2161-2528&rft.isbn=9781424442607&rft.isbn_list=1424442605&rft_id=info:doi/10.1109/ISSE.2009.5206930&rft_dat=%3Cieee_6IE%3E5206930%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5206930&rfr_iscdi=true