Pose estimation with radial distortion and unknown focal length
This paper presents a solution to the problem of pose estimation in the presence of heavy radial distortion and a potentially large number of outliers. The main contribution is an algorithm that solves for radial distortion, focal length and camera pose using a minimal set of four point corresponden...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2426 |
---|---|
container_issue | |
container_start_page | 2419 |
container_title | |
container_volume | |
creator | Josephson, Klas Byrod, Martin |
description | This paper presents a solution to the problem of pose estimation in the presence of heavy radial distortion and a potentially large number of outliers. The main contribution is an algorithm that solves for radial distortion, focal length and camera pose using a minimal set of four point correspondences between 3D world points and image points. We use a RANSAC loop to find a set of inliers and an initial estimate for bundle adjustment. Unlike previous approaches where one starts out by assuming a linear projection model, our minimal solver allows us to handle large radial distortions already at the RANSAC stage. We demonstrate that with the inclusion of radial distortion in an early stage of the process, a broader variety of cameras can be handled than was previously possible. In the experiments, no calibration whatsoever is applied to the camera. Instead we assume square pixels, zero skew and centered principal point. Although these assumptions are not strictly true, we show that good results are still obtained and by that conclude that the proposed method is applicable to uncalibrated photographs. |
doi_str_mv | 10.1109/CVPR.2009.5206756 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5206756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5206756</ieee_id><sourcerecordid>5206756</sourcerecordid><originalsourceid>FETCH-LOGICAL-i636-17486be7366a3bae4ea730bb67a9570d4f62e997f81b992324f2c54f6a7d9eea3</originalsourceid><addsrcrecordid>eNo1j91Kw0AUhFdUsK19APFmXyDx7E92c65Ein9QsEjxtpw0J3Y1biQbKb69QevVMDMwfCPEhYJcKcCrxcvqOdcAmBcanC_ckZijL5XV1hpEpY7F9N9ofSImCpzJHCo8E9OU3gC08Rom4nrVJZachvBBQ-ii3IdhJ3uqA7WyDmno-t-YYi2_4nvs9lE23XYsW46vw-5cnDbUJp4fdCbWd7frxUO2fLp_XNwss-CMy5S3pavYG-fIVMSWyRuoKucJCw-1bZxmRN-UqhqBjbaN3hZjSr5GZjIzcfk3G5h589mPtP335vDd_ADMrktY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pose estimation with radial distortion and unknown focal length</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Josephson, Klas ; Byrod, Martin</creator><creatorcontrib>Josephson, Klas ; Byrod, Martin</creatorcontrib><description>This paper presents a solution to the problem of pose estimation in the presence of heavy radial distortion and a potentially large number of outliers. The main contribution is an algorithm that solves for radial distortion, focal length and camera pose using a minimal set of four point correspondences between 3D world points and image points. We use a RANSAC loop to find a set of inliers and an initial estimate for bundle adjustment. Unlike previous approaches where one starts out by assuming a linear projection model, our minimal solver allows us to handle large radial distortions already at the RANSAC stage. We demonstrate that with the inclusion of radial distortion in an early stage of the process, a broader variety of cameras can be handled than was previously possible. In the experiments, no calibration whatsoever is applied to the camera. Instead we assume square pixels, zero skew and centered principal point. Although these assumptions are not strictly true, we show that good results are still obtained and by that conclude that the proposed method is applicable to uncalibrated photographs.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1424439922</identifier><identifier>ISBN: 9781424439928</identifier><identifier>EISBN: 9781424439911</identifier><identifier>EISBN: 1424439914</identifier><identifier>DOI: 10.1109/CVPR.2009.5206756</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Cameras ; Computer vision ; Engines ; Equations ; Kernel ; Layout ; Lenses ; Polynomials ; Voting</subject><ispartof>2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, p.2419-2426</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5206756$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5206756$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Josephson, Klas</creatorcontrib><creatorcontrib>Byrod, Martin</creatorcontrib><title>Pose estimation with radial distortion and unknown focal length</title><title>2009 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>This paper presents a solution to the problem of pose estimation in the presence of heavy radial distortion and a potentially large number of outliers. The main contribution is an algorithm that solves for radial distortion, focal length and camera pose using a minimal set of four point correspondences between 3D world points and image points. We use a RANSAC loop to find a set of inliers and an initial estimate for bundle adjustment. Unlike previous approaches where one starts out by assuming a linear projection model, our minimal solver allows us to handle large radial distortions already at the RANSAC stage. We demonstrate that with the inclusion of radial distortion in an early stage of the process, a broader variety of cameras can be handled than was previously possible. In the experiments, no calibration whatsoever is applied to the camera. Instead we assume square pixels, zero skew and centered principal point. Although these assumptions are not strictly true, we show that good results are still obtained and by that conclude that the proposed method is applicable to uncalibrated photographs.</description><subject>Calibration</subject><subject>Cameras</subject><subject>Computer vision</subject><subject>Engines</subject><subject>Equations</subject><subject>Kernel</subject><subject>Layout</subject><subject>Lenses</subject><subject>Polynomials</subject><subject>Voting</subject><issn>1063-6919</issn><isbn>1424439922</isbn><isbn>9781424439928</isbn><isbn>9781424439911</isbn><isbn>1424439914</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91Kw0AUhFdUsK19APFmXyDx7E92c65Ein9QsEjxtpw0J3Y1biQbKb69QevVMDMwfCPEhYJcKcCrxcvqOdcAmBcanC_ckZijL5XV1hpEpY7F9N9ofSImCpzJHCo8E9OU3gC08Rom4nrVJZachvBBQ-ii3IdhJ3uqA7WyDmno-t-YYi2_4nvs9lE23XYsW46vw-5cnDbUJp4fdCbWd7frxUO2fLp_XNwss-CMy5S3pavYG-fIVMSWyRuoKucJCw-1bZxmRN-UqhqBjbaN3hZjSr5GZjIzcfk3G5h589mPtP335vDd_ADMrktY</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Josephson, Klas</creator><creator>Byrod, Martin</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200906</creationdate><title>Pose estimation with radial distortion and unknown focal length</title><author>Josephson, Klas ; Byrod, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i636-17486be7366a3bae4ea730bb67a9570d4f62e997f81b992324f2c54f6a7d9eea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Calibration</topic><topic>Cameras</topic><topic>Computer vision</topic><topic>Engines</topic><topic>Equations</topic><topic>Kernel</topic><topic>Layout</topic><topic>Lenses</topic><topic>Polynomials</topic><topic>Voting</topic><toplevel>online_resources</toplevel><creatorcontrib>Josephson, Klas</creatorcontrib><creatorcontrib>Byrod, Martin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Josephson, Klas</au><au>Byrod, Martin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pose estimation with radial distortion and unknown focal length</atitle><btitle>2009 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2009-06</date><risdate>2009</risdate><spage>2419</spage><epage>2426</epage><pages>2419-2426</pages><issn>1063-6919</issn><isbn>1424439922</isbn><isbn>9781424439928</isbn><eisbn>9781424439911</eisbn><eisbn>1424439914</eisbn><abstract>This paper presents a solution to the problem of pose estimation in the presence of heavy radial distortion and a potentially large number of outliers. The main contribution is an algorithm that solves for radial distortion, focal length and camera pose using a minimal set of four point correspondences between 3D world points and image points. We use a RANSAC loop to find a set of inliers and an initial estimate for bundle adjustment. Unlike previous approaches where one starts out by assuming a linear projection model, our minimal solver allows us to handle large radial distortions already at the RANSAC stage. We demonstrate that with the inclusion of radial distortion in an early stage of the process, a broader variety of cameras can be handled than was previously possible. In the experiments, no calibration whatsoever is applied to the camera. Instead we assume square pixels, zero skew and centered principal point. Although these assumptions are not strictly true, we show that good results are still obtained and by that conclude that the proposed method is applicable to uncalibrated photographs.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2009.5206756</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, p.2419-2426 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_5206756 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Calibration Cameras Computer vision Engines Equations Kernel Layout Lenses Polynomials Voting |
title | Pose estimation with radial distortion and unknown focal length |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pose%20estimation%20with%20radial%20distortion%20and%20unknown%20focal%20length&rft.btitle=2009%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Josephson,%20Klas&rft.date=2009-06&rft.spage=2419&rft.epage=2426&rft.pages=2419-2426&rft.issn=1063-6919&rft.isbn=1424439922&rft.isbn_list=9781424439928&rft_id=info:doi/10.1109/CVPR.2009.5206756&rft_dat=%3Cieee_6IE%3E5206756%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424439911&rft.eisbn_list=1424439914&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5206756&rfr_iscdi=true |