Tight bounds on the codeword lengths and average codeword length for D-ary Huffman codes - Part 1

This paper presents new results of the D-ary Huffman tree. These results are used to prove that the maximum value of the average codeword length is obtained for the uniform distribution. The upper bound computed in this paper is higher than the value obtained for Huffman codes with minimum redundanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zaharia, G., Munteanu, V., Tarniceriu, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Zaharia, G.
Munteanu, V.
Tarniceriu, D.
description This paper presents new results of the D-ary Huffman tree. These results are used to prove that the maximum value of the average codeword length is obtained for the uniform distribution. The upper bound computed in this paper is higher than the value obtained for Huffman codes with minimum redundancy.
doi_str_mv 10.1109/ISSCS.2009.5206161
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_5206161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5206161</ieee_id><sourcerecordid>oai_HAL_hal_00446151v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h124t-8fadcf817af9a93b005113ded09a4aef807b85a476349ec7e66382f8540f21c83</originalsourceid><addsrcrecordid>eNplkE1Lw0AQhlekoK35A3rZq4fUnf3K7rHUjxQCCq3nMM3uNpE2kSSt-O-NtnpxLi8z78PwzhByDWwKwOzdYrmcL6ecMTtVnGnQcEbGILmUIjFanZPIJua3V3pExgNrLHAu1QWJuu6NDSUVH-xLgqtqU_Z03exr19Gmpn3padE4_9G0jm59venLjmLtKB58i5t_Jg1NS-9jbD9pug9hh_UP0dGYvmDbU7gio4DbzkcnnZDXx4fVPI2z56fFfJbFJXDZxyagK4KBBINFK9aMKQDhvGMWJfpgWLI2CmWihbS-SLzWwvBglGSBQ2HEhNwe95a4zd_bajdEyhus8nSW5d-z4WipQcEBBvbmyFbe-z_49E7xBXGqZRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Tight bounds on the codeword lengths and average codeword length for D-ary Huffman codes - Part 1</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zaharia, G. ; Munteanu, V. ; Tarniceriu, D.</creator><creatorcontrib>Zaharia, G. ; Munteanu, V. ; Tarniceriu, D.</creatorcontrib><description>This paper presents new results of the D-ary Huffman tree. These results are used to prove that the maximum value of the average codeword length is obtained for the uniform distribution. The upper bound computed in this paper is higher than the value obtained for Huffman codes with minimum redundancy.</description><identifier>ISBN: 9781424437856</identifier><identifier>ISBN: 1424437857</identifier><identifier>EISBN: 1424437865</identifier><identifier>EISBN: 9781424437863</identifier><identifier>DOI: 10.1109/ISSCS.2009.5206161</identifier><identifier>LCCN: 2008912245</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data compression ; Encoding ; Huffman coding ; Information technology ; Probability distribution ; Upper bound</subject><ispartof>2009 International Symposium on Signals, Circuits and Systems, 2009, p.1-4</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2352-7932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5206161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5206161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00446151$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaharia, G.</creatorcontrib><creatorcontrib>Munteanu, V.</creatorcontrib><creatorcontrib>Tarniceriu, D.</creatorcontrib><title>Tight bounds on the codeword lengths and average codeword length for D-ary Huffman codes - Part 1</title><title>2009 International Symposium on Signals, Circuits and Systems</title><addtitle>ISSCS</addtitle><description>This paper presents new results of the D-ary Huffman tree. These results are used to prove that the maximum value of the average codeword length is obtained for the uniform distribution. The upper bound computed in this paper is higher than the value obtained for Huffman codes with minimum redundancy.</description><subject>Data compression</subject><subject>Encoding</subject><subject>Huffman coding</subject><subject>Information technology</subject><subject>Probability distribution</subject><subject>Upper bound</subject><isbn>9781424437856</isbn><isbn>1424437857</isbn><isbn>1424437865</isbn><isbn>9781424437863</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNplkE1Lw0AQhlekoK35A3rZq4fUnf3K7rHUjxQCCq3nMM3uNpE2kSSt-O-NtnpxLi8z78PwzhByDWwKwOzdYrmcL6ecMTtVnGnQcEbGILmUIjFanZPIJua3V3pExgNrLHAu1QWJuu6NDSUVH-xLgqtqU_Z03exr19Gmpn3padE4_9G0jm59venLjmLtKB58i5t_Jg1NS-9jbD9pug9hh_UP0dGYvmDbU7gio4DbzkcnnZDXx4fVPI2z56fFfJbFJXDZxyagK4KBBINFK9aMKQDhvGMWJfpgWLI2CmWihbS-SLzWwvBglGSBQ2HEhNwe95a4zd_bajdEyhus8nSW5d-z4WipQcEBBvbmyFbe-z_49E7xBXGqZRM</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Zaharia, G.</creator><creator>Munteanu, V.</creator><creator>Tarniceriu, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2352-7932</orcidid></search><sort><creationdate>200907</creationdate><title>Tight bounds on the codeword lengths and average codeword length for D-ary Huffman codes - Part 1</title><author>Zaharia, G. ; Munteanu, V. ; Tarniceriu, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h124t-8fadcf817af9a93b005113ded09a4aef807b85a476349ec7e66382f8540f21c83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data compression</topic><topic>Encoding</topic><topic>Huffman coding</topic><topic>Information technology</topic><topic>Probability distribution</topic><topic>Upper bound</topic><toplevel>online_resources</toplevel><creatorcontrib>Zaharia, G.</creatorcontrib><creatorcontrib>Munteanu, V.</creatorcontrib><creatorcontrib>Tarniceriu, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zaharia, G.</au><au>Munteanu, V.</au><au>Tarniceriu, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Tight bounds on the codeword lengths and average codeword length for D-ary Huffman codes - Part 1</atitle><btitle>2009 International Symposium on Signals, Circuits and Systems</btitle><stitle>ISSCS</stitle><date>2009-07</date><risdate>2009</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781424437856</isbn><isbn>1424437857</isbn><eisbn>1424437865</eisbn><eisbn>9781424437863</eisbn><abstract>This paper presents new results of the D-ary Huffman tree. These results are used to prove that the maximum value of the average codeword length is obtained for the uniform distribution. The upper bound computed in this paper is higher than the value obtained for Huffman codes with minimum redundancy.</abstract><pub>IEEE</pub><doi>10.1109/ISSCS.2009.5206161</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2352-7932</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424437856
ispartof 2009 International Symposium on Signals, Circuits and Systems, 2009, p.1-4
issn
language eng
recordid cdi_ieee_primary_5206161
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data compression
Encoding
Huffman coding
Information technology
Probability distribution
Upper bound
title Tight bounds on the codeword lengths and average codeword length for D-ary Huffman codes - Part 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Tight%20bounds%20on%20the%20codeword%20lengths%20and%20average%20codeword%20length%20for%20D-ary%20Huffman%20codes%20-%20Part%201&rft.btitle=2009%20International%20Symposium%20on%20Signals,%20Circuits%20and%20Systems&rft.au=Zaharia,%20G.&rft.date=2009-07&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781424437856&rft.isbn_list=1424437857&rft_id=info:doi/10.1109/ISSCS.2009.5206161&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00446151v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424437865&rft.eisbn_list=9781424437863&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5206161&rfr_iscdi=true