Tight bounds on the codeword lengths and average codeword length for D-ary Huffman codes - Part 1
This paper presents new results of the D-ary Huffman tree. These results are used to prove that the maximum value of the average codeword length is obtained for the uniform distribution. The upper bound computed in this paper is higher than the value obtained for Huffman codes with minimum redundanc...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Zaharia, G. Munteanu, V. Tarniceriu, D. |
description | This paper presents new results of the D-ary Huffman tree. These results are used to prove that the maximum value of the average codeword length is obtained for the uniform distribution. The upper bound computed in this paper is higher than the value obtained for Huffman codes with minimum redundancy. |
doi_str_mv | 10.1109/ISSCS.2009.5206161 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_5206161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5206161</ieee_id><sourcerecordid>oai_HAL_hal_00446151v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h124t-8fadcf817af9a93b005113ded09a4aef807b85a476349ec7e66382f8540f21c83</originalsourceid><addsrcrecordid>eNplkE1Lw0AQhlekoK35A3rZq4fUnf3K7rHUjxQCCq3nMM3uNpE2kSSt-O-NtnpxLi8z78PwzhByDWwKwOzdYrmcL6ecMTtVnGnQcEbGILmUIjFanZPIJua3V3pExgNrLHAu1QWJuu6NDSUVH-xLgqtqU_Z03exr19Gmpn3padE4_9G0jm59venLjmLtKB58i5t_Jg1NS-9jbD9pug9hh_UP0dGYvmDbU7gio4DbzkcnnZDXx4fVPI2z56fFfJbFJXDZxyagK4KBBINFK9aMKQDhvGMWJfpgWLI2CmWihbS-SLzWwvBglGSBQ2HEhNwe95a4zd_bajdEyhus8nSW5d-z4WipQcEBBvbmyFbe-z_49E7xBXGqZRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Tight bounds on the codeword lengths and average codeword length for D-ary Huffman codes - Part 1</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zaharia, G. ; Munteanu, V. ; Tarniceriu, D.</creator><creatorcontrib>Zaharia, G. ; Munteanu, V. ; Tarniceriu, D.</creatorcontrib><description>This paper presents new results of the D-ary Huffman tree. These results are used to prove that the maximum value of the average codeword length is obtained for the uniform distribution. The upper bound computed in this paper is higher than the value obtained for Huffman codes with minimum redundancy.</description><identifier>ISBN: 9781424437856</identifier><identifier>ISBN: 1424437857</identifier><identifier>EISBN: 1424437865</identifier><identifier>EISBN: 9781424437863</identifier><identifier>DOI: 10.1109/ISSCS.2009.5206161</identifier><identifier>LCCN: 2008912245</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data compression ; Encoding ; Huffman coding ; Information technology ; Probability distribution ; Upper bound</subject><ispartof>2009 International Symposium on Signals, Circuits and Systems, 2009, p.1-4</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2352-7932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5206161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5206161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00446151$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaharia, G.</creatorcontrib><creatorcontrib>Munteanu, V.</creatorcontrib><creatorcontrib>Tarniceriu, D.</creatorcontrib><title>Tight bounds on the codeword lengths and average codeword length for D-ary Huffman codes - Part 1</title><title>2009 International Symposium on Signals, Circuits and Systems</title><addtitle>ISSCS</addtitle><description>This paper presents new results of the D-ary Huffman tree. These results are used to prove that the maximum value of the average codeword length is obtained for the uniform distribution. The upper bound computed in this paper is higher than the value obtained for Huffman codes with minimum redundancy.</description><subject>Data compression</subject><subject>Encoding</subject><subject>Huffman coding</subject><subject>Information technology</subject><subject>Probability distribution</subject><subject>Upper bound</subject><isbn>9781424437856</isbn><isbn>1424437857</isbn><isbn>1424437865</isbn><isbn>9781424437863</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNplkE1Lw0AQhlekoK35A3rZq4fUnf3K7rHUjxQCCq3nMM3uNpE2kSSt-O-NtnpxLi8z78PwzhByDWwKwOzdYrmcL6ecMTtVnGnQcEbGILmUIjFanZPIJua3V3pExgNrLHAu1QWJuu6NDSUVH-xLgqtqU_Z03exr19Gmpn3padE4_9G0jm59venLjmLtKB58i5t_Jg1NS-9jbD9pug9hh_UP0dGYvmDbU7gio4DbzkcnnZDXx4fVPI2z56fFfJbFJXDZxyagK4KBBINFK9aMKQDhvGMWJfpgWLI2CmWihbS-SLzWwvBglGSBQ2HEhNwe95a4zd_bajdEyhus8nSW5d-z4WipQcEBBvbmyFbe-z_49E7xBXGqZRM</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Zaharia, G.</creator><creator>Munteanu, V.</creator><creator>Tarniceriu, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2352-7932</orcidid></search><sort><creationdate>200907</creationdate><title>Tight bounds on the codeword lengths and average codeword length for D-ary Huffman codes - Part 1</title><author>Zaharia, G. ; Munteanu, V. ; Tarniceriu, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h124t-8fadcf817af9a93b005113ded09a4aef807b85a476349ec7e66382f8540f21c83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data compression</topic><topic>Encoding</topic><topic>Huffman coding</topic><topic>Information technology</topic><topic>Probability distribution</topic><topic>Upper bound</topic><toplevel>online_resources</toplevel><creatorcontrib>Zaharia, G.</creatorcontrib><creatorcontrib>Munteanu, V.</creatorcontrib><creatorcontrib>Tarniceriu, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zaharia, G.</au><au>Munteanu, V.</au><au>Tarniceriu, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Tight bounds on the codeword lengths and average codeword length for D-ary Huffman codes - Part 1</atitle><btitle>2009 International Symposium on Signals, Circuits and Systems</btitle><stitle>ISSCS</stitle><date>2009-07</date><risdate>2009</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781424437856</isbn><isbn>1424437857</isbn><eisbn>1424437865</eisbn><eisbn>9781424437863</eisbn><abstract>This paper presents new results of the D-ary Huffman tree. These results are used to prove that the maximum value of the average codeword length is obtained for the uniform distribution. The upper bound computed in this paper is higher than the value obtained for Huffman codes with minimum redundancy.</abstract><pub>IEEE</pub><doi>10.1109/ISSCS.2009.5206161</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2352-7932</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424437856 |
ispartof | 2009 International Symposium on Signals, Circuits and Systems, 2009, p.1-4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5206161 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data compression Encoding Huffman coding Information technology Probability distribution Upper bound |
title | Tight bounds on the codeword lengths and average codeword length for D-ary Huffman codes - Part 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Tight%20bounds%20on%20the%20codeword%20lengths%20and%20average%20codeword%20length%20for%20D-ary%20Huffman%20codes%20-%20Part%201&rft.btitle=2009%20International%20Symposium%20on%20Signals,%20Circuits%20and%20Systems&rft.au=Zaharia,%20G.&rft.date=2009-07&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781424437856&rft.isbn_list=1424437857&rft_id=info:doi/10.1109/ISSCS.2009.5206161&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00446151v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424437865&rft.eisbn_list=9781424437863&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5206161&rfr_iscdi=true |