Number of measurements in sparse signal recovery

We analyze the asymptotic performance of sparse signal recovery from noisy measurements. In particular, we generalize some of the existing results for the Gaussian case to sub-Gaussian and other ensembles. An achievable result is presented for the linear sparsity regime. A converse on the number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tune, P., Bhaskaran, S.R., Hanly, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue
container_start_page 16
container_title
container_volume
creator Tune, P.
Bhaskaran, S.R.
Hanly, S.
description We analyze the asymptotic performance of sparse signal recovery from noisy measurements. In particular, we generalize some of the existing results for the Gaussian case to sub-Gaussian and other ensembles. An achievable result is presented for the linear sparsity regime. A converse on the number of required measurements in the sub-linear regime is also presented, which cover many of the widely used measurement ensembles. Our converse idea makes use of a correspondence between compressed sensing ideas and compound channels in information theory.
doi_str_mv 10.1109/ISIT.2009.5205809
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5205809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5205809</ieee_id><sourcerecordid>5205809</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-fe496db26f0a3f4520e565003c1e49fa68df94d02a0fc4d5aaf1a5cb36bc4e2b3</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRc2jEqH0AxAb_0DCzNiO4yWqeESqYEFZV04yRkFNW9ktUv-eSJQFq7s40j26V4hbhAIR3H39Xi8LAnCFITAVuDMxc7ZCTVprhQrORUZobF4h2ot_jNTlHwNnJiKzlKN1WtkrcZ3SF4CyCigT8HoYGo5yG-TAPh0iD7zZJ9lvZNr5mFim_nPj1zJyu_3meLwRk-DXiWennIqPp8fl_CVfvD3X84dF3hNW-zywdmXXUBnAq6DHAWxKM2pbHEnwZdUFpzsgD6HVnfE-oDdto8qm1UyNmoq7396emVe72A8-HlenI9QP9qZLFQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Number of measurements in sparse signal recovery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tune, P. ; Bhaskaran, S.R. ; Hanly, S.</creator><creatorcontrib>Tune, P. ; Bhaskaran, S.R. ; Hanly, S.</creatorcontrib><description>We analyze the asymptotic performance of sparse signal recovery from noisy measurements. In particular, we generalize some of the existing results for the Gaussian case to sub-Gaussian and other ensembles. An achievable result is presented for the linear sparsity regime. A converse on the number of required measurements in the sub-linear regime is also presented, which cover many of the widely used measurement ensembles. Our converse idea makes use of a correspondence between compressed sensing ideas and compound channels in information theory.</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781424443123</identifier><identifier>ISBN: 1424443121</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781424443130</identifier><identifier>EISBN: 142444313X</identifier><identifier>DOI: 10.1109/ISIT.2009.5205809</identifier><identifier>LCCN: 72-179437</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Compressed sensing ; Error probability ; Information theory ; Particle measurements ; Performance analysis ; Random variables ; Signal analysis ; Sparse matrices ; Vectors</subject><ispartof>2009 IEEE International Symposium on Information Theory, 2009, p.16-20</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5205809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5205809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tune, P.</creatorcontrib><creatorcontrib>Bhaskaran, S.R.</creatorcontrib><creatorcontrib>Hanly, S.</creatorcontrib><title>Number of measurements in sparse signal recovery</title><title>2009 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>We analyze the asymptotic performance of sparse signal recovery from noisy measurements. In particular, we generalize some of the existing results for the Gaussian case to sub-Gaussian and other ensembles. An achievable result is presented for the linear sparsity regime. A converse on the number of required measurements in the sub-linear regime is also presented, which cover many of the widely used measurement ensembles. Our converse idea makes use of a correspondence between compressed sensing ideas and compound channels in information theory.</description><subject>Australia</subject><subject>Compressed sensing</subject><subject>Error probability</subject><subject>Information theory</subject><subject>Particle measurements</subject><subject>Performance analysis</subject><subject>Random variables</subject><subject>Signal analysis</subject><subject>Sparse matrices</subject><subject>Vectors</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781424443123</isbn><isbn>1424443121</isbn><isbn>9781424443130</isbn><isbn>142444313X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAQRc2jEqH0AxAb_0DCzNiO4yWqeESqYEFZV04yRkFNW9ktUv-eSJQFq7s40j26V4hbhAIR3H39Xi8LAnCFITAVuDMxc7ZCTVprhQrORUZobF4h2ot_jNTlHwNnJiKzlKN1WtkrcZ3SF4CyCigT8HoYGo5yG-TAPh0iD7zZJ9lvZNr5mFim_nPj1zJyu_3meLwRk-DXiWennIqPp8fl_CVfvD3X84dF3hNW-zywdmXXUBnAq6DHAWxKM2pbHEnwZdUFpzsgD6HVnfE-oDdto8qm1UyNmoq7396emVe72A8-HlenI9QP9qZLFQ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Tune, P.</creator><creator>Bhaskaran, S.R.</creator><creator>Hanly, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20090101</creationdate><title>Number of measurements in sparse signal recovery</title><author>Tune, P. ; Bhaskaran, S.R. ; Hanly, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-fe496db26f0a3f4520e565003c1e49fa68df94d02a0fc4d5aaf1a5cb36bc4e2b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Australia</topic><topic>Compressed sensing</topic><topic>Error probability</topic><topic>Information theory</topic><topic>Particle measurements</topic><topic>Performance analysis</topic><topic>Random variables</topic><topic>Signal analysis</topic><topic>Sparse matrices</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tune, P.</creatorcontrib><creatorcontrib>Bhaskaran, S.R.</creatorcontrib><creatorcontrib>Hanly, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tune, P.</au><au>Bhaskaran, S.R.</au><au>Hanly, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Number of measurements in sparse signal recovery</atitle><btitle>2009 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2009-01-01</date><risdate>2009</risdate><spage>16</spage><epage>20</epage><pages>16-20</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781424443123</isbn><isbn>1424443121</isbn><eisbn>9781424443130</eisbn><eisbn>142444313X</eisbn><abstract>We analyze the asymptotic performance of sparse signal recovery from noisy measurements. In particular, we generalize some of the existing results for the Gaussian case to sub-Gaussian and other ensembles. An achievable result is presented for the linear sparsity regime. A converse on the number of required measurements in the sub-linear regime is also presented, which cover many of the widely used measurement ensembles. Our converse idea makes use of a correspondence between compressed sensing ideas and compound channels in information theory.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2009.5205809</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-8095
ispartof 2009 IEEE International Symposium on Information Theory, 2009, p.16-20
issn 2157-8095
2157-8117
language eng
recordid cdi_ieee_primary_5205809
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Australia
Compressed sensing
Error probability
Information theory
Particle measurements
Performance analysis
Random variables
Signal analysis
Sparse matrices
Vectors
title Number of measurements in sparse signal recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Number%20of%20measurements%20in%20sparse%20signal%20recovery&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Tune,%20P.&rft.date=2009-01-01&rft.spage=16&rft.epage=20&rft.pages=16-20&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781424443123&rft.isbn_list=1424443121&rft_id=info:doi/10.1109/ISIT.2009.5205809&rft_dat=%3Cieee_6IE%3E5205809%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424443130&rft.eisbn_list=142444313X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5205809&rfr_iscdi=true