Number of measurements in sparse signal recovery
We analyze the asymptotic performance of sparse signal recovery from noisy measurements. In particular, we generalize some of the existing results for the Gaussian case to sub-Gaussian and other ensembles. An achievable result is presented for the linear sparsity regime. A converse on the number of...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | |
container_start_page | 16 |
container_title | |
container_volume | |
creator | Tune, P. Bhaskaran, S.R. Hanly, S. |
description | We analyze the asymptotic performance of sparse signal recovery from noisy measurements. In particular, we generalize some of the existing results for the Gaussian case to sub-Gaussian and other ensembles. An achievable result is presented for the linear sparsity regime. A converse on the number of required measurements in the sub-linear regime is also presented, which cover many of the widely used measurement ensembles. Our converse idea makes use of a correspondence between compressed sensing ideas and compound channels in information theory. |
doi_str_mv | 10.1109/ISIT.2009.5205809 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5205809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5205809</ieee_id><sourcerecordid>5205809</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-fe496db26f0a3f4520e565003c1e49fa68df94d02a0fc4d5aaf1a5cb36bc4e2b3</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRc2jEqH0AxAb_0DCzNiO4yWqeESqYEFZV04yRkFNW9ktUv-eSJQFq7s40j26V4hbhAIR3H39Xi8LAnCFITAVuDMxc7ZCTVprhQrORUZobF4h2ot_jNTlHwNnJiKzlKN1WtkrcZ3SF4CyCigT8HoYGo5yG-TAPh0iD7zZJ9lvZNr5mFim_nPj1zJyu_3meLwRk-DXiWennIqPp8fl_CVfvD3X84dF3hNW-zywdmXXUBnAq6DHAWxKM2pbHEnwZdUFpzsgD6HVnfE-oDdto8qm1UyNmoq7396emVe72A8-HlenI9QP9qZLFQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Number of measurements in sparse signal recovery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tune, P. ; Bhaskaran, S.R. ; Hanly, S.</creator><creatorcontrib>Tune, P. ; Bhaskaran, S.R. ; Hanly, S.</creatorcontrib><description>We analyze the asymptotic performance of sparse signal recovery from noisy measurements. In particular, we generalize some of the existing results for the Gaussian case to sub-Gaussian and other ensembles. An achievable result is presented for the linear sparsity regime. A converse on the number of required measurements in the sub-linear regime is also presented, which cover many of the widely used measurement ensembles. Our converse idea makes use of a correspondence between compressed sensing ideas and compound channels in information theory.</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 9781424443123</identifier><identifier>ISBN: 1424443121</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781424443130</identifier><identifier>EISBN: 142444313X</identifier><identifier>DOI: 10.1109/ISIT.2009.5205809</identifier><identifier>LCCN: 72-179437</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Compressed sensing ; Error probability ; Information theory ; Particle measurements ; Performance analysis ; Random variables ; Signal analysis ; Sparse matrices ; Vectors</subject><ispartof>2009 IEEE International Symposium on Information Theory, 2009, p.16-20</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5205809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5205809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tune, P.</creatorcontrib><creatorcontrib>Bhaskaran, S.R.</creatorcontrib><creatorcontrib>Hanly, S.</creatorcontrib><title>Number of measurements in sparse signal recovery</title><title>2009 IEEE International Symposium on Information Theory</title><addtitle>ISIT</addtitle><description>We analyze the asymptotic performance of sparse signal recovery from noisy measurements. In particular, we generalize some of the existing results for the Gaussian case to sub-Gaussian and other ensembles. An achievable result is presented for the linear sparsity regime. A converse on the number of required measurements in the sub-linear regime is also presented, which cover many of the widely used measurement ensembles. Our converse idea makes use of a correspondence between compressed sensing ideas and compound channels in information theory.</description><subject>Australia</subject><subject>Compressed sensing</subject><subject>Error probability</subject><subject>Information theory</subject><subject>Particle measurements</subject><subject>Performance analysis</subject><subject>Random variables</subject><subject>Signal analysis</subject><subject>Sparse matrices</subject><subject>Vectors</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>9781424443123</isbn><isbn>1424443121</isbn><isbn>9781424443130</isbn><isbn>142444313X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAQRc2jEqH0AxAb_0DCzNiO4yWqeESqYEFZV04yRkFNW9ktUv-eSJQFq7s40j26V4hbhAIR3H39Xi8LAnCFITAVuDMxc7ZCTVprhQrORUZobF4h2ot_jNTlHwNnJiKzlKN1WtkrcZ3SF4CyCigT8HoYGo5yG-TAPh0iD7zZJ9lvZNr5mFim_nPj1zJyu_3meLwRk-DXiWennIqPp8fl_CVfvD3X84dF3hNW-zywdmXXUBnAq6DHAWxKM2pbHEnwZdUFpzsgD6HVnfE-oDdto8qm1UyNmoq7396emVe72A8-HlenI9QP9qZLFQ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Tune, P.</creator><creator>Bhaskaran, S.R.</creator><creator>Hanly, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20090101</creationdate><title>Number of measurements in sparse signal recovery</title><author>Tune, P. ; Bhaskaran, S.R. ; Hanly, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-fe496db26f0a3f4520e565003c1e49fa68df94d02a0fc4d5aaf1a5cb36bc4e2b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Australia</topic><topic>Compressed sensing</topic><topic>Error probability</topic><topic>Information theory</topic><topic>Particle measurements</topic><topic>Performance analysis</topic><topic>Random variables</topic><topic>Signal analysis</topic><topic>Sparse matrices</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tune, P.</creatorcontrib><creatorcontrib>Bhaskaran, S.R.</creatorcontrib><creatorcontrib>Hanly, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tune, P.</au><au>Bhaskaran, S.R.</au><au>Hanly, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Number of measurements in sparse signal recovery</atitle><btitle>2009 IEEE International Symposium on Information Theory</btitle><stitle>ISIT</stitle><date>2009-01-01</date><risdate>2009</risdate><spage>16</spage><epage>20</epage><pages>16-20</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>9781424443123</isbn><isbn>1424443121</isbn><eisbn>9781424443130</eisbn><eisbn>142444313X</eisbn><abstract>We analyze the asymptotic performance of sparse signal recovery from noisy measurements. In particular, we generalize some of the existing results for the Gaussian case to sub-Gaussian and other ensembles. An achievable result is presented for the linear sparsity regime. A converse on the number of required measurements in the sub-linear regime is also presented, which cover many of the widely used measurement ensembles. Our converse idea makes use of a correspondence between compressed sensing ideas and compound channels in information theory.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2009.5205809</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-8095 |
ispartof | 2009 IEEE International Symposium on Information Theory, 2009, p.16-20 |
issn | 2157-8095 2157-8117 |
language | eng |
recordid | cdi_ieee_primary_5205809 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Australia Compressed sensing Error probability Information theory Particle measurements Performance analysis Random variables Signal analysis Sparse matrices Vectors |
title | Number of measurements in sparse signal recovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Number%20of%20measurements%20in%20sparse%20signal%20recovery&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Information%20Theory&rft.au=Tune,%20P.&rft.date=2009-01-01&rft.spage=16&rft.epage=20&rft.pages=16-20&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=9781424443123&rft.isbn_list=1424443121&rft_id=info:doi/10.1109/ISIT.2009.5205809&rft_dat=%3Cieee_6IE%3E5205809%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424443130&rft.eisbn_list=142444313X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5205809&rfr_iscdi=true |