Development of fuzzy logic-based arithmetic and visual representations for solving quadratic programming in fully fuzzy environment

This paper presents the development of fuzzy logic representations using the notion of normalized fuzzy matrices developed by Gabr and Dorrah [1-4] for solving quadratic programming problems in a fully fuzzy environment. The first is the arithmetic type based on dual cell representation, expressed b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dorrah, H.T., Gabr, W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue
container_start_page 46
container_title
container_volume
creator Dorrah, H.T.
Gabr, W.
description This paper presents the development of fuzzy logic representations using the notion of normalized fuzzy matrices developed by Gabr and Dorrah [1-4] for solving quadratic programming problems in a fully fuzzy environment. The first is the arithmetic type based on dual cell representation, expressed by replacing each parameter with a pair of parentheses, the first is the actual value and the second is corresponding fuzzy level, (Value, Fuzzy Level). The second is the visual type based on colored cells representation expressed by replacing each parameter by its value and coded (negative or positive) colors based on the color Hue circle corresponding to its fuzzy level. The quadratic programming problem formulation in its general form is developed in a fully fuzzy environment. A modified dual simplex method algorithm is depicted for the representation of the equivalent linear optimization problem. The problem is represented in a spreadsheet model with built-in programmed Visual Basic Applications macros. The proposed fuzzy logic algebra is then used in a straightforward manner inside this spreadsheet model. The fuzzy logic levels can be easily transferred at the end of the solution to equivalent uncertainties (each level is substituted by a corresponding actual mean and actual standard deviation). Finally, a numerical example is given to illustrate the efficacy of the developed formulations.
doi_str_mv 10.1109/ICINFA.2009.5204893
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5204893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5204893</ieee_id><sourcerecordid>5204893</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7e87cf0d24c5a9c644ed39a5a0cd57c491cb8167a308630fe7651a254f34ef123</originalsourceid><addsrcrecordid>eNo1kEFPAjEQhWsMiYL8Ai79A4vttt1ujwRFSYxeuJOhO8Wa3e3aLiRw9Y-7RJzLZF7ee18yhMw4m3POzON6uX5fLeY5Y2auciZLI27ImMtcSlGwUt-SqdHl_635iIwHb2k4V0rekWlKX2wYqXKt5T35ecIj1qFrsO1pcNQdzucTrcPe22wHCSsK0fefDfbeUmgrevTpADWN2EVMQwh6H9pEXYg0hfro2z39PkAV4RLoYthHaJqL6tuhvK5PVwS2Rx9De-E-kJGDOuH0uidks3reLF-zt4-X9XLxlnnD-kxjqa1jVS6tAmMLKbESBhQwWyltpeF2V_JCg2BlIZhDXSgOuZJOSHQ8FxMy-6v1iLjtom8gnrbXH4pfs7lndg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Development of fuzzy logic-based arithmetic and visual representations for solving quadratic programming in fully fuzzy environment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dorrah, H.T. ; Gabr, W.</creator><creatorcontrib>Dorrah, H.T. ; Gabr, W.</creatorcontrib><description>This paper presents the development of fuzzy logic representations using the notion of normalized fuzzy matrices developed by Gabr and Dorrah [1-4] for solving quadratic programming problems in a fully fuzzy environment. The first is the arithmetic type based on dual cell representation, expressed by replacing each parameter with a pair of parentheses, the first is the actual value and the second is corresponding fuzzy level, (Value, Fuzzy Level). The second is the visual type based on colored cells representation expressed by replacing each parameter by its value and coded (negative or positive) colors based on the color Hue circle corresponding to its fuzzy level. The quadratic programming problem formulation in its general form is developed in a fully fuzzy environment. A modified dual simplex method algorithm is depicted for the representation of the equivalent linear optimization problem. The problem is represented in a spreadsheet model with built-in programmed Visual Basic Applications macros. The proposed fuzzy logic algebra is then used in a straightforward manner inside this spreadsheet model. The fuzzy logic levels can be easily transferred at the end of the solution to equivalent uncertainties (each level is substituted by a corresponding actual mean and actual standard deviation). Finally, a numerical example is given to illustrate the efficacy of the developed formulations.</description><identifier>ISBN: 9781424436071</identifier><identifier>ISBN: 1424436079</identifier><identifier>EISBN: 1424436087</identifier><identifier>EISBN: 9781424436088</identifier><identifier>DOI: 10.1109/ICINFA.2009.5204893</identifier><identifier>LCCN: 2008911554</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ant colony optimization ; Arithmetic ; Fuzzy logic ; Fuzzy neural networks ; Fuzzy systems ; Genetic algorithms ; Mathematical programming ; Optimization methods ; Quadratic programming ; Uncertainty</subject><ispartof>2009 International Conference on Information and Automation, 2009, p.46-53</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5204893$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5204893$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dorrah, H.T.</creatorcontrib><creatorcontrib>Gabr, W.</creatorcontrib><title>Development of fuzzy logic-based arithmetic and visual representations for solving quadratic programming in fully fuzzy environment</title><title>2009 International Conference on Information and Automation</title><addtitle>ICINFA</addtitle><description>This paper presents the development of fuzzy logic representations using the notion of normalized fuzzy matrices developed by Gabr and Dorrah [1-4] for solving quadratic programming problems in a fully fuzzy environment. The first is the arithmetic type based on dual cell representation, expressed by replacing each parameter with a pair of parentheses, the first is the actual value and the second is corresponding fuzzy level, (Value, Fuzzy Level). The second is the visual type based on colored cells representation expressed by replacing each parameter by its value and coded (negative or positive) colors based on the color Hue circle corresponding to its fuzzy level. The quadratic programming problem formulation in its general form is developed in a fully fuzzy environment. A modified dual simplex method algorithm is depicted for the representation of the equivalent linear optimization problem. The problem is represented in a spreadsheet model with built-in programmed Visual Basic Applications macros. The proposed fuzzy logic algebra is then used in a straightforward manner inside this spreadsheet model. The fuzzy logic levels can be easily transferred at the end of the solution to equivalent uncertainties (each level is substituted by a corresponding actual mean and actual standard deviation). Finally, a numerical example is given to illustrate the efficacy of the developed formulations.</description><subject>Ant colony optimization</subject><subject>Arithmetic</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Mathematical programming</subject><subject>Optimization methods</subject><subject>Quadratic programming</subject><subject>Uncertainty</subject><isbn>9781424436071</isbn><isbn>1424436079</isbn><isbn>1424436087</isbn><isbn>9781424436088</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEFPAjEQhWsMiYL8Ai79A4vttt1ujwRFSYxeuJOhO8Wa3e3aLiRw9Y-7RJzLZF7ee18yhMw4m3POzON6uX5fLeY5Y2auciZLI27ImMtcSlGwUt-SqdHl_635iIwHb2k4V0rekWlKX2wYqXKt5T35ecIj1qFrsO1pcNQdzucTrcPe22wHCSsK0fefDfbeUmgrevTpADWN2EVMQwh6H9pEXYg0hfro2z39PkAV4RLoYthHaJqL6tuhvK5PVwS2Rx9De-E-kJGDOuH0uidks3reLF-zt4-X9XLxlnnD-kxjqa1jVS6tAmMLKbESBhQwWyltpeF2V_JCg2BlIZhDXSgOuZJOSHQ8FxMy-6v1iLjtom8gnrbXH4pfs7lndg</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Dorrah, H.T.</creator><creator>Gabr, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Development of fuzzy logic-based arithmetic and visual representations for solving quadratic programming in fully fuzzy environment</title><author>Dorrah, H.T. ; Gabr, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7e87cf0d24c5a9c644ed39a5a0cd57c491cb8167a308630fe7651a254f34ef123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ant colony optimization</topic><topic>Arithmetic</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Mathematical programming</topic><topic>Optimization methods</topic><topic>Quadratic programming</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Dorrah, H.T.</creatorcontrib><creatorcontrib>Gabr, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dorrah, H.T.</au><au>Gabr, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Development of fuzzy logic-based arithmetic and visual representations for solving quadratic programming in fully fuzzy environment</atitle><btitle>2009 International Conference on Information and Automation</btitle><stitle>ICINFA</stitle><date>2009-06</date><risdate>2009</risdate><spage>46</spage><epage>53</epage><pages>46-53</pages><isbn>9781424436071</isbn><isbn>1424436079</isbn><eisbn>1424436087</eisbn><eisbn>9781424436088</eisbn><abstract>This paper presents the development of fuzzy logic representations using the notion of normalized fuzzy matrices developed by Gabr and Dorrah [1-4] for solving quadratic programming problems in a fully fuzzy environment. The first is the arithmetic type based on dual cell representation, expressed by replacing each parameter with a pair of parentheses, the first is the actual value and the second is corresponding fuzzy level, (Value, Fuzzy Level). The second is the visual type based on colored cells representation expressed by replacing each parameter by its value and coded (negative or positive) colors based on the color Hue circle corresponding to its fuzzy level. The quadratic programming problem formulation in its general form is developed in a fully fuzzy environment. A modified dual simplex method algorithm is depicted for the representation of the equivalent linear optimization problem. The problem is represented in a spreadsheet model with built-in programmed Visual Basic Applications macros. The proposed fuzzy logic algebra is then used in a straightforward manner inside this spreadsheet model. The fuzzy logic levels can be easily transferred at the end of the solution to equivalent uncertainties (each level is substituted by a corresponding actual mean and actual standard deviation). Finally, a numerical example is given to illustrate the efficacy of the developed formulations.</abstract><pub>IEEE</pub><doi>10.1109/ICINFA.2009.5204893</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424436071
ispartof 2009 International Conference on Information and Automation, 2009, p.46-53
issn
language eng
recordid cdi_ieee_primary_5204893
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Ant colony optimization
Arithmetic
Fuzzy logic
Fuzzy neural networks
Fuzzy systems
Genetic algorithms
Mathematical programming
Optimization methods
Quadratic programming
Uncertainty
title Development of fuzzy logic-based arithmetic and visual representations for solving quadratic programming in fully fuzzy environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Development%20of%20fuzzy%20logic-based%20arithmetic%20and%20visual%20representations%20for%20solving%20quadratic%20programming%20in%20fully%20fuzzy%20environment&rft.btitle=2009%20International%20Conference%20on%20Information%20and%20Automation&rft.au=Dorrah,%20H.T.&rft.date=2009-06&rft.spage=46&rft.epage=53&rft.pages=46-53&rft.isbn=9781424436071&rft.isbn_list=1424436079&rft_id=info:doi/10.1109/ICINFA.2009.5204893&rft_dat=%3Cieee_6IE%3E5204893%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424436087&rft.eisbn_list=9781424436088&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5204893&rfr_iscdi=true