An ensemble approach for increased anomaly detection performance in video surveillance data

The increased societal need for surveillance and the decrease in cost of sensors have led to a number of new challenges. The problem is not to collect data but to use it effectively for decision support. Manual interpretation of huge amounts of data in real-time is not feasible; the operator of a su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Brax, C., Niklasson, L., Laxhammar, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 701
container_issue
container_start_page 694
container_title
container_volume
creator Brax, C.
Niklasson, L.
Laxhammar, R.
description The increased societal need for surveillance and the decrease in cost of sensors have led to a number of new challenges. The problem is not to collect data but to use it effectively for decision support. Manual interpretation of huge amounts of data in real-time is not feasible; the operator of a surveillance system needs support to analyze and understand all incoming data. In this paper an approach to intelligent video surveillance is presented, with emphasis on finding behavioural anomalies. Two different anomaly detection methods are compared and combined. The results show that it is possible to best increase the total detection performance by combining two different anomaly detectors rather than employing them independently.
format Conference Proceeding
fullrecord <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_ieee_primary_5203886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5203886</ieee_id><sourcerecordid>oai_DiVA_org_his_3413</sourcerecordid><originalsourceid>FETCH-LOGICAL-i211t-8f88d887ba701cc2de452b944c236ddbbb42741bf258b563170a187f2fe5755a3</originalsourceid><addsrcrecordid>eNo9zE1LAzEUheEBEZTaX-Ameynkc3JnWeonFNyoGxfDTXLHRmYmQzKt9N9bVFwdeHk4Z9WyscAbkFor4PqiWpbyyTkXTW0F8MvqfT0yGgsNrieG05QT-h3rUmZx9JmwUGA4pgH7Iws0k59jGtlE-UQGHD2dHDvEQImVfT5Q7PufGnDGq-q8w77Q8m8X1ev93cvmcbV9fnjarLerKIWYV9ABBADr0HLhvQykjXSN1l6qOgTnnJZWC9dJA87USliOAmwnOzLWGFSL6ub3t3zRtHftlOOA-dgmjO1tfFu3KX-0u1hapYU66etfHYno3xrJFUCtvgE8Ilzm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An ensemble approach for increased anomaly detection performance in video surveillance data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Brax, C. ; Niklasson, L. ; Laxhammar, R.</creator><creatorcontrib>Brax, C. ; Niklasson, L. ; Laxhammar, R.</creatorcontrib><description>The increased societal need for surveillance and the decrease in cost of sensors have led to a number of new challenges. The problem is not to collect data but to use it effectively for decision support. Manual interpretation of huge amounts of data in real-time is not feasible; the operator of a surveillance system needs support to analyze and understand all incoming data. In this paper an approach to intelligent video surveillance is presented, with emphasis on finding behavioural anomalies. Two different anomaly detection methods are compared and combined. The results show that it is possible to best increase the total detection performance by combining two different anomaly detectors rather than employing them independently.</description><identifier>ISBN: 9780982443804</identifier><identifier>ISBN: 0982443803</identifier><language>eng</language><publisher>IEEE</publisher><subject>anomaly detection ; behaviour classification ; Cameras ; CCTV ; classifier fusion ; Costs ; Detection algorithms ; Detectors ; Explosions ; Informatics ; Real time systems ; Sensor fusion ; Technology ; Teknik ; Terrorism ; video content analysis ; Video surveillance</subject><ispartof>2009 12th International Conference on Information Fusion, 2009, p.694-701</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5203886$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,4050,4051,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5203886$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-3413$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Brax, C.</creatorcontrib><creatorcontrib>Niklasson, L.</creatorcontrib><creatorcontrib>Laxhammar, R.</creatorcontrib><title>An ensemble approach for increased anomaly detection performance in video surveillance data</title><title>2009 12th International Conference on Information Fusion</title><addtitle>ICIF</addtitle><description>The increased societal need for surveillance and the decrease in cost of sensors have led to a number of new challenges. The problem is not to collect data but to use it effectively for decision support. Manual interpretation of huge amounts of data in real-time is not feasible; the operator of a surveillance system needs support to analyze and understand all incoming data. In this paper an approach to intelligent video surveillance is presented, with emphasis on finding behavioural anomalies. Two different anomaly detection methods are compared and combined. The results show that it is possible to best increase the total detection performance by combining two different anomaly detectors rather than employing them independently.</description><subject>anomaly detection</subject><subject>behaviour classification</subject><subject>Cameras</subject><subject>CCTV</subject><subject>classifier fusion</subject><subject>Costs</subject><subject>Detection algorithms</subject><subject>Detectors</subject><subject>Explosions</subject><subject>Informatics</subject><subject>Real time systems</subject><subject>Sensor fusion</subject><subject>Technology</subject><subject>Teknik</subject><subject>Terrorism</subject><subject>video content analysis</subject><subject>Video surveillance</subject><isbn>9780982443804</isbn><isbn>0982443803</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9zE1LAzEUheEBEZTaX-Ameynkc3JnWeonFNyoGxfDTXLHRmYmQzKt9N9bVFwdeHk4Z9WyscAbkFor4PqiWpbyyTkXTW0F8MvqfT0yGgsNrieG05QT-h3rUmZx9JmwUGA4pgH7Iws0k59jGtlE-UQGHD2dHDvEQImVfT5Q7PufGnDGq-q8w77Q8m8X1ev93cvmcbV9fnjarLerKIWYV9ABBADr0HLhvQykjXSN1l6qOgTnnJZWC9dJA87USliOAmwnOzLWGFSL6ub3t3zRtHftlOOA-dgmjO1tfFu3KX-0u1hapYU66etfHYno3xrJFUCtvgE8Ilzm</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Brax, C.</creator><creator>Niklasson, L.</creator><creator>Laxhammar, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>DF6</scope></search><sort><creationdate>200907</creationdate><title>An ensemble approach for increased anomaly detection performance in video surveillance data</title><author>Brax, C. ; Niklasson, L. ; Laxhammar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i211t-8f88d887ba701cc2de452b944c236ddbbb42741bf258b563170a187f2fe5755a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>anomaly detection</topic><topic>behaviour classification</topic><topic>Cameras</topic><topic>CCTV</topic><topic>classifier fusion</topic><topic>Costs</topic><topic>Detection algorithms</topic><topic>Detectors</topic><topic>Explosions</topic><topic>Informatics</topic><topic>Real time systems</topic><topic>Sensor fusion</topic><topic>Technology</topic><topic>Teknik</topic><topic>Terrorism</topic><topic>video content analysis</topic><topic>Video surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Brax, C.</creatorcontrib><creatorcontrib>Niklasson, L.</creatorcontrib><creatorcontrib>Laxhammar, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Högskolan i Skövde</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brax, C.</au><au>Niklasson, L.</au><au>Laxhammar, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An ensemble approach for increased anomaly detection performance in video surveillance data</atitle><btitle>2009 12th International Conference on Information Fusion</btitle><stitle>ICIF</stitle><date>2009-07</date><risdate>2009</risdate><spage>694</spage><epage>701</epage><pages>694-701</pages><isbn>9780982443804</isbn><isbn>0982443803</isbn><abstract>The increased societal need for surveillance and the decrease in cost of sensors have led to a number of new challenges. The problem is not to collect data but to use it effectively for decision support. Manual interpretation of huge amounts of data in real-time is not feasible; the operator of a surveillance system needs support to analyze and understand all incoming data. In this paper an approach to intelligent video surveillance is presented, with emphasis on finding behavioural anomalies. Two different anomaly detection methods are compared and combined. The results show that it is possible to best increase the total detection performance by combining two different anomaly detectors rather than employing them independently.</abstract><pub>IEEE</pub><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780982443804
ispartof 2009 12th International Conference on Information Fusion, 2009, p.694-701
issn
language eng
recordid cdi_ieee_primary_5203886
source IEEE Electronic Library (IEL) Conference Proceedings
subjects anomaly detection
behaviour classification
Cameras
CCTV
classifier fusion
Costs
Detection algorithms
Detectors
Explosions
Informatics
Real time systems
Sensor fusion
Technology
Teknik
Terrorism
video content analysis
Video surveillance
title An ensemble approach for increased anomaly detection performance in video surveillance data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20ensemble%20approach%20for%20increased%20anomaly%20detection%20performance%20in%20video%20surveillance%20data&rft.btitle=2009%2012th%20International%20Conference%20on%20Information%20Fusion&rft.au=Brax,%20C.&rft.date=2009-07&rft.spage=694&rft.epage=701&rft.pages=694-701&rft.isbn=9780982443804&rft.isbn_list=0982443803&rft_id=info:doi/&rft_dat=%3Cswepub_6IE%3Eoai_DiVA_org_his_3413%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5203886&rfr_iscdi=true