A novel video copy detection method based on statistical analysis
The careless illegally copied contents have been rising serious social problem as Internet and multimedia technologies are developing. Therefore, effective and efficient copy detection techniques are required for content management and rights protection. In this paper, we propose a content-based hie...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1739 |
---|---|
container_issue | |
container_start_page | 1736 |
container_title | |
container_volume | |
creator | Hye-Jeong Cho Yeo-Song Lee Chae-Bong Sohn Kwang-Sue Chung Seoung-Jun Oh |
description | The careless illegally copied contents have been rising serious social problem as Internet and multimedia technologies are developing. Therefore, effective and efficient copy detection techniques are required for content management and rights protection. In this paper, we propose a content-based hierarchical video copy detection method that estimates similarity using statistical characteristics between an original video and its spatial variations. We rank luminance average value of video that is robust to the special transformation, and choose similar video sequences named as candidate segments in huge amount of database to reduce processing time and complexity. Finally, we detect the copied video by using the hypothesis test of mean. As experiment result, proposed method has similar copy detection ratio accuracy to the reference method while our processing time and complexity are less than those of the reference since we can reduce the number of keyframes up to 50%. Also, the proposed method can efficiently detect spatial variations such as blur, contrast change, zoom in, and zoom out. |
doi_str_mv | 10.1109/ICME.2009.5202856 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5202856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5202856</ieee_id><sourcerecordid>5202856</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4c589ef1487555a027579e18b336ef34825aa1fc2f6440405410f0cb06cc28853</originalsourceid><addsrcrecordid>eNo9j8tqwzAUREUf0JD6A0o3-gG7V_KVJS2DSdtASjdZdBdk-YqqOHaIRMB_30BDZzMcBg4MY08CKiHAvmzaj3UlAWylJEijmhu2EBZVqY35umWF1UagRERpAe_-Ny0eWJHSD1yCqhaiWbDVio_TmQZ-jj1N3E_HmfeUyec4jfxA-XvqeecS9fzCKbscU47eDdyNbphTTI_sPrghUXHtJdu9rnfte7n9fNu0q20ZLeQSvTKWgkCjlVIOpFbakjBdXTcUajRSOSeCl6FBBASFAgL4DhrvpTGqXrLnP20kov3xFA_uNO-v_-tfe8hLMw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel video copy detection method based on statistical analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hye-Jeong Cho ; Yeo-Song Lee ; Chae-Bong Sohn ; Kwang-Sue Chung ; Seoung-Jun Oh</creator><creatorcontrib>Hye-Jeong Cho ; Yeo-Song Lee ; Chae-Bong Sohn ; Kwang-Sue Chung ; Seoung-Jun Oh</creatorcontrib><description>The careless illegally copied contents have been rising serious social problem as Internet and multimedia technologies are developing. Therefore, effective and efficient copy detection techniques are required for content management and rights protection. In this paper, we propose a content-based hierarchical video copy detection method that estimates similarity using statistical characteristics between an original video and its spatial variations. We rank luminance average value of video that is robust to the special transformation, and choose similar video sequences named as candidate segments in huge amount of database to reduce processing time and complexity. Finally, we detect the copied video by using the hypothesis test of mean. As experiment result, proposed method has similar copy detection ratio accuracy to the reference method while our processing time and complexity are less than those of the reference since we can reduce the number of keyframes up to 50%. Also, the proposed method can efficiently detect spatial variations such as blur, contrast change, zoom in, and zoom out.</description><identifier>ISSN: 1945-7871</identifier><identifier>ISBN: 9781424442904</identifier><identifier>ISBN: 1424442907</identifier><identifier>EISSN: 1945-788X</identifier><identifier>DOI: 10.1109/ICME.2009.5202856</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational complexity ; Content-based video copy detection ; hypothesis test ; Intellectual property ; keyframe selection ; Protection ; Robustness ; Statistical analysis ; Streaming media ; Testing ; Video compression ; Video sequences ; Watermarking</subject><ispartof>2009 IEEE International Conference on Multimedia and Expo, 2009, p.1736-1739</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5202856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5202856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hye-Jeong Cho</creatorcontrib><creatorcontrib>Yeo-Song Lee</creatorcontrib><creatorcontrib>Chae-Bong Sohn</creatorcontrib><creatorcontrib>Kwang-Sue Chung</creatorcontrib><creatorcontrib>Seoung-Jun Oh</creatorcontrib><title>A novel video copy detection method based on statistical analysis</title><title>2009 IEEE International Conference on Multimedia and Expo</title><addtitle>ICME</addtitle><description>The careless illegally copied contents have been rising serious social problem as Internet and multimedia technologies are developing. Therefore, effective and efficient copy detection techniques are required for content management and rights protection. In this paper, we propose a content-based hierarchical video copy detection method that estimates similarity using statistical characteristics between an original video and its spatial variations. We rank luminance average value of video that is robust to the special transformation, and choose similar video sequences named as candidate segments in huge amount of database to reduce processing time and complexity. Finally, we detect the copied video by using the hypothesis test of mean. As experiment result, proposed method has similar copy detection ratio accuracy to the reference method while our processing time and complexity are less than those of the reference since we can reduce the number of keyframes up to 50%. Also, the proposed method can efficiently detect spatial variations such as blur, contrast change, zoom in, and zoom out.</description><subject>Computational complexity</subject><subject>Content-based video copy detection</subject><subject>hypothesis test</subject><subject>Intellectual property</subject><subject>keyframe selection</subject><subject>Protection</subject><subject>Robustness</subject><subject>Statistical analysis</subject><subject>Streaming media</subject><subject>Testing</subject><subject>Video compression</subject><subject>Video sequences</subject><subject>Watermarking</subject><issn>1945-7871</issn><issn>1945-788X</issn><isbn>9781424442904</isbn><isbn>1424442907</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j8tqwzAUREUf0JD6A0o3-gG7V_KVJS2DSdtASjdZdBdk-YqqOHaIRMB_30BDZzMcBg4MY08CKiHAvmzaj3UlAWylJEijmhu2EBZVqY35umWF1UagRERpAe_-Ny0eWJHSD1yCqhaiWbDVio_TmQZ-jj1N3E_HmfeUyec4jfxA-XvqeecS9fzCKbscU47eDdyNbphTTI_sPrghUXHtJdu9rnfte7n9fNu0q20ZLeQSvTKWgkCjlVIOpFbakjBdXTcUajRSOSeCl6FBBASFAgL4DhrvpTGqXrLnP20kov3xFA_uNO-v_-tfe8hLMw</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Hye-Jeong Cho</creator><creator>Yeo-Song Lee</creator><creator>Chae-Bong Sohn</creator><creator>Kwang-Sue Chung</creator><creator>Seoung-Jun Oh</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>A novel video copy detection method based on statistical analysis</title><author>Hye-Jeong Cho ; Yeo-Song Lee ; Chae-Bong Sohn ; Kwang-Sue Chung ; Seoung-Jun Oh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4c589ef1487555a027579e18b336ef34825aa1fc2f6440405410f0cb06cc28853</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational complexity</topic><topic>Content-based video copy detection</topic><topic>hypothesis test</topic><topic>Intellectual property</topic><topic>keyframe selection</topic><topic>Protection</topic><topic>Robustness</topic><topic>Statistical analysis</topic><topic>Streaming media</topic><topic>Testing</topic><topic>Video compression</topic><topic>Video sequences</topic><topic>Watermarking</topic><toplevel>online_resources</toplevel><creatorcontrib>Hye-Jeong Cho</creatorcontrib><creatorcontrib>Yeo-Song Lee</creatorcontrib><creatorcontrib>Chae-Bong Sohn</creatorcontrib><creatorcontrib>Kwang-Sue Chung</creatorcontrib><creatorcontrib>Seoung-Jun Oh</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hye-Jeong Cho</au><au>Yeo-Song Lee</au><au>Chae-Bong Sohn</au><au>Kwang-Sue Chung</au><au>Seoung-Jun Oh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel video copy detection method based on statistical analysis</atitle><btitle>2009 IEEE International Conference on Multimedia and Expo</btitle><stitle>ICME</stitle><date>2009-06</date><risdate>2009</risdate><spage>1736</spage><epage>1739</epage><pages>1736-1739</pages><issn>1945-7871</issn><eissn>1945-788X</eissn><isbn>9781424442904</isbn><isbn>1424442907</isbn><abstract>The careless illegally copied contents have been rising serious social problem as Internet and multimedia technologies are developing. Therefore, effective and efficient copy detection techniques are required for content management and rights protection. In this paper, we propose a content-based hierarchical video copy detection method that estimates similarity using statistical characteristics between an original video and its spatial variations. We rank luminance average value of video that is robust to the special transformation, and choose similar video sequences named as candidate segments in huge amount of database to reduce processing time and complexity. Finally, we detect the copied video by using the hypothesis test of mean. As experiment result, proposed method has similar copy detection ratio accuracy to the reference method while our processing time and complexity are less than those of the reference since we can reduce the number of keyframes up to 50%. Also, the proposed method can efficiently detect spatial variations such as blur, contrast change, zoom in, and zoom out.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2009.5202856</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7871 |
ispartof | 2009 IEEE International Conference on Multimedia and Expo, 2009, p.1736-1739 |
issn | 1945-7871 1945-788X |
language | eng |
recordid | cdi_ieee_primary_5202856 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational complexity Content-based video copy detection hypothesis test Intellectual property keyframe selection Protection Robustness Statistical analysis Streaming media Testing Video compression Video sequences Watermarking |
title | A novel video copy detection method based on statistical analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A18%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20video%20copy%20detection%20method%20based%20on%20statistical%20analysis&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo&rft.au=Hye-Jeong%20Cho&rft.date=2009-06&rft.spage=1736&rft.epage=1739&rft.pages=1736-1739&rft.issn=1945-7871&rft.eissn=1945-788X&rft.isbn=9781424442904&rft.isbn_list=1424442907&rft_id=info:doi/10.1109/ICME.2009.5202856&rft_dat=%3Cieee_6IE%3E5202856%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5202856&rfr_iscdi=true |