A novel video copy detection method based on statistical analysis

The careless illegally copied contents have been rising serious social problem as Internet and multimedia technologies are developing. Therefore, effective and efficient copy detection techniques are required for content management and rights protection. In this paper, we propose a content-based hie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hye-Jeong Cho, Yeo-Song Lee, Chae-Bong Sohn, Kwang-Sue Chung, Seoung-Jun Oh
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1739
container_issue
container_start_page 1736
container_title
container_volume
creator Hye-Jeong Cho
Yeo-Song Lee
Chae-Bong Sohn
Kwang-Sue Chung
Seoung-Jun Oh
description The careless illegally copied contents have been rising serious social problem as Internet and multimedia technologies are developing. Therefore, effective and efficient copy detection techniques are required for content management and rights protection. In this paper, we propose a content-based hierarchical video copy detection method that estimates similarity using statistical characteristics between an original video and its spatial variations. We rank luminance average value of video that is robust to the special transformation, and choose similar video sequences named as candidate segments in huge amount of database to reduce processing time and complexity. Finally, we detect the copied video by using the hypothesis test of mean. As experiment result, proposed method has similar copy detection ratio accuracy to the reference method while our processing time and complexity are less than those of the reference since we can reduce the number of keyframes up to 50%. Also, the proposed method can efficiently detect spatial variations such as blur, contrast change, zoom in, and zoom out.
doi_str_mv 10.1109/ICME.2009.5202856
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5202856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5202856</ieee_id><sourcerecordid>5202856</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4c589ef1487555a027579e18b336ef34825aa1fc2f6440405410f0cb06cc28853</originalsourceid><addsrcrecordid>eNo9j8tqwzAUREUf0JD6A0o3-gG7V_KVJS2DSdtASjdZdBdk-YqqOHaIRMB_30BDZzMcBg4MY08CKiHAvmzaj3UlAWylJEijmhu2EBZVqY35umWF1UagRERpAe_-Ny0eWJHSD1yCqhaiWbDVio_TmQZ-jj1N3E_HmfeUyec4jfxA-XvqeecS9fzCKbscU47eDdyNbphTTI_sPrghUXHtJdu9rnfte7n9fNu0q20ZLeQSvTKWgkCjlVIOpFbakjBdXTcUajRSOSeCl6FBBASFAgL4DhrvpTGqXrLnP20kov3xFA_uNO-v_-tfe8hLMw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel video copy detection method based on statistical analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hye-Jeong Cho ; Yeo-Song Lee ; Chae-Bong Sohn ; Kwang-Sue Chung ; Seoung-Jun Oh</creator><creatorcontrib>Hye-Jeong Cho ; Yeo-Song Lee ; Chae-Bong Sohn ; Kwang-Sue Chung ; Seoung-Jun Oh</creatorcontrib><description>The careless illegally copied contents have been rising serious social problem as Internet and multimedia technologies are developing. Therefore, effective and efficient copy detection techniques are required for content management and rights protection. In this paper, we propose a content-based hierarchical video copy detection method that estimates similarity using statistical characteristics between an original video and its spatial variations. We rank luminance average value of video that is robust to the special transformation, and choose similar video sequences named as candidate segments in huge amount of database to reduce processing time and complexity. Finally, we detect the copied video by using the hypothesis test of mean. As experiment result, proposed method has similar copy detection ratio accuracy to the reference method while our processing time and complexity are less than those of the reference since we can reduce the number of keyframes up to 50%. Also, the proposed method can efficiently detect spatial variations such as blur, contrast change, zoom in, and zoom out.</description><identifier>ISSN: 1945-7871</identifier><identifier>ISBN: 9781424442904</identifier><identifier>ISBN: 1424442907</identifier><identifier>EISSN: 1945-788X</identifier><identifier>DOI: 10.1109/ICME.2009.5202856</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational complexity ; Content-based video copy detection ; hypothesis test ; Intellectual property ; keyframe selection ; Protection ; Robustness ; Statistical analysis ; Streaming media ; Testing ; Video compression ; Video sequences ; Watermarking</subject><ispartof>2009 IEEE International Conference on Multimedia and Expo, 2009, p.1736-1739</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5202856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5202856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hye-Jeong Cho</creatorcontrib><creatorcontrib>Yeo-Song Lee</creatorcontrib><creatorcontrib>Chae-Bong Sohn</creatorcontrib><creatorcontrib>Kwang-Sue Chung</creatorcontrib><creatorcontrib>Seoung-Jun Oh</creatorcontrib><title>A novel video copy detection method based on statistical analysis</title><title>2009 IEEE International Conference on Multimedia and Expo</title><addtitle>ICME</addtitle><description>The careless illegally copied contents have been rising serious social problem as Internet and multimedia technologies are developing. Therefore, effective and efficient copy detection techniques are required for content management and rights protection. In this paper, we propose a content-based hierarchical video copy detection method that estimates similarity using statistical characteristics between an original video and its spatial variations. We rank luminance average value of video that is robust to the special transformation, and choose similar video sequences named as candidate segments in huge amount of database to reduce processing time and complexity. Finally, we detect the copied video by using the hypothesis test of mean. As experiment result, proposed method has similar copy detection ratio accuracy to the reference method while our processing time and complexity are less than those of the reference since we can reduce the number of keyframes up to 50%. Also, the proposed method can efficiently detect spatial variations such as blur, contrast change, zoom in, and zoom out.</description><subject>Computational complexity</subject><subject>Content-based video copy detection</subject><subject>hypothesis test</subject><subject>Intellectual property</subject><subject>keyframe selection</subject><subject>Protection</subject><subject>Robustness</subject><subject>Statistical analysis</subject><subject>Streaming media</subject><subject>Testing</subject><subject>Video compression</subject><subject>Video sequences</subject><subject>Watermarking</subject><issn>1945-7871</issn><issn>1945-788X</issn><isbn>9781424442904</isbn><isbn>1424442907</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j8tqwzAUREUf0JD6A0o3-gG7V_KVJS2DSdtASjdZdBdk-YqqOHaIRMB_30BDZzMcBg4MY08CKiHAvmzaj3UlAWylJEijmhu2EBZVqY35umWF1UagRERpAe_-Ny0eWJHSD1yCqhaiWbDVio_TmQZ-jj1N3E_HmfeUyec4jfxA-XvqeecS9fzCKbscU47eDdyNbphTTI_sPrghUXHtJdu9rnfte7n9fNu0q20ZLeQSvTKWgkCjlVIOpFbakjBdXTcUajRSOSeCl6FBBASFAgL4DhrvpTGqXrLnP20kov3xFA_uNO-v_-tfe8hLMw</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Hye-Jeong Cho</creator><creator>Yeo-Song Lee</creator><creator>Chae-Bong Sohn</creator><creator>Kwang-Sue Chung</creator><creator>Seoung-Jun Oh</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>A novel video copy detection method based on statistical analysis</title><author>Hye-Jeong Cho ; Yeo-Song Lee ; Chae-Bong Sohn ; Kwang-Sue Chung ; Seoung-Jun Oh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4c589ef1487555a027579e18b336ef34825aa1fc2f6440405410f0cb06cc28853</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational complexity</topic><topic>Content-based video copy detection</topic><topic>hypothesis test</topic><topic>Intellectual property</topic><topic>keyframe selection</topic><topic>Protection</topic><topic>Robustness</topic><topic>Statistical analysis</topic><topic>Streaming media</topic><topic>Testing</topic><topic>Video compression</topic><topic>Video sequences</topic><topic>Watermarking</topic><toplevel>online_resources</toplevel><creatorcontrib>Hye-Jeong Cho</creatorcontrib><creatorcontrib>Yeo-Song Lee</creatorcontrib><creatorcontrib>Chae-Bong Sohn</creatorcontrib><creatorcontrib>Kwang-Sue Chung</creatorcontrib><creatorcontrib>Seoung-Jun Oh</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hye-Jeong Cho</au><au>Yeo-Song Lee</au><au>Chae-Bong Sohn</au><au>Kwang-Sue Chung</au><au>Seoung-Jun Oh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel video copy detection method based on statistical analysis</atitle><btitle>2009 IEEE International Conference on Multimedia and Expo</btitle><stitle>ICME</stitle><date>2009-06</date><risdate>2009</risdate><spage>1736</spage><epage>1739</epage><pages>1736-1739</pages><issn>1945-7871</issn><eissn>1945-788X</eissn><isbn>9781424442904</isbn><isbn>1424442907</isbn><abstract>The careless illegally copied contents have been rising serious social problem as Internet and multimedia technologies are developing. Therefore, effective and efficient copy detection techniques are required for content management and rights protection. In this paper, we propose a content-based hierarchical video copy detection method that estimates similarity using statistical characteristics between an original video and its spatial variations. We rank luminance average value of video that is robust to the special transformation, and choose similar video sequences named as candidate segments in huge amount of database to reduce processing time and complexity. Finally, we detect the copied video by using the hypothesis test of mean. As experiment result, proposed method has similar copy detection ratio accuracy to the reference method while our processing time and complexity are less than those of the reference since we can reduce the number of keyframes up to 50%. Also, the proposed method can efficiently detect spatial variations such as blur, contrast change, zoom in, and zoom out.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2009.5202856</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7871
ispartof 2009 IEEE International Conference on Multimedia and Expo, 2009, p.1736-1739
issn 1945-7871
1945-788X
language eng
recordid cdi_ieee_primary_5202856
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational complexity
Content-based video copy detection
hypothesis test
Intellectual property
keyframe selection
Protection
Robustness
Statistical analysis
Streaming media
Testing
Video compression
Video sequences
Watermarking
title A novel video copy detection method based on statistical analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A18%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20video%20copy%20detection%20method%20based%20on%20statistical%20analysis&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo&rft.au=Hye-Jeong%20Cho&rft.date=2009-06&rft.spage=1736&rft.epage=1739&rft.pages=1736-1739&rft.issn=1945-7871&rft.eissn=1945-788X&rft.isbn=9781424442904&rft.isbn_list=1424442907&rft_id=info:doi/10.1109/ICME.2009.5202856&rft_dat=%3Cieee_6IE%3E5202856%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5202856&rfr_iscdi=true