Signal segmentation and modelling based on EquiPartition principle

In this paper, we propose a method for time interval segmentation of signals based on an equipartition principle (EP). According to EP, the signal is segmented into segments that give equal errors in reconstruction selecting the most suitable model to describe each segment. Moreover, the segments ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Panagiotakis, C., Tziritas, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Panagiotakis, C.
Tziritas, G.
description In this paper, we propose a method for time interval segmentation of signals based on an equipartition principle (EP). According to EP, the signal is segmented into segments that give equal errors in reconstruction selecting the most suitable model to describe each segment. Moreover, the segments are equivalent in the content domain, since the signal is segmented into segments that are modelled by the same number of coefficients. The proposed method has been successfully applied on different types of signals like: physiologic, speech, human motion, financial time series. Finally, the proposed methodology is very flexible on changes of error criteria, signal modelling and on signal dimension yielding a robust method for segmentation and modelling of signals.
doi_str_mv 10.1109/ICDSP.2009.5201105
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5201105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5201105</ieee_id><sourcerecordid>5201105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1345-e8b149909a2319aa24fcd4adb65d93efe78544ab319a46168f99908531c048c83</originalsourceid><addsrcrecordid>eNo1kMtOwzAQRc2jEmnJD8AmP5Dgx_i1hLRApUpUKqwrJ3Yio8QtSVjw9xgosxnp3qszV4PQDcEFIVjfrcvlbltQjHXBKY4SP0NzAhSAUa3kOUooETxnXMoLlGqp_j0JlyghHEROlIQZmkeG0lhToa9QOo7vOA5wFskJetj5NpguG13buzCZyR9CZoLN-oN1XedDm1VmdDaL8urj02_NMPnf0HHwofbHzl2jWWO60aWnvUBvj6vX8jnfvDyty_tN7gkDnjtVEdCxh6GMaGMoNLUFYyvBrWaucVJxAFP9mCCIUI2OacUZqTGoWrEFuv3jeufcPp7vzfC1P_2GfQOk8lC6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Signal segmentation and modelling based on EquiPartition principle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Panagiotakis, C. ; Tziritas, G.</creator><creatorcontrib>Panagiotakis, C. ; Tziritas, G.</creatorcontrib><description>In this paper, we propose a method for time interval segmentation of signals based on an equipartition principle (EP). According to EP, the signal is segmented into segments that give equal errors in reconstruction selecting the most suitable model to describe each segment. Moreover, the segments are equivalent in the content domain, since the signal is segmented into segments that are modelled by the same number of coefficients. The proposed method has been successfully applied on different types of signals like: physiologic, speech, human motion, financial time series. Finally, the proposed methodology is very flexible on changes of error criteria, signal modelling and on signal dimension yielding a robust method for segmentation and modelling of signals.</description><identifier>ISSN: 1546-1874</identifier><identifier>ISBN: 9781424432974</identifier><identifier>ISBN: 1424432979</identifier><identifier>EISSN: 2165-3577</identifier><identifier>EISBN: 1424432987</identifier><identifier>EISBN: 9781424432981</identifier><identifier>DOI: 10.1109/ICDSP.2009.5201105</identifier><identifier>LCCN: 2008909269</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer errors ; Computer science ; equipartition ; Euclidean distance ; Humans ; Pattern recognition ; Robustness ; Signal analysis ; signal modelling ; Signal segmentation ; Speech ; Time frequency analysis ; Time series analysis</subject><ispartof>2009 16th International Conference on Digital Signal Processing, 2009, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5201105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5201105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Panagiotakis, C.</creatorcontrib><creatorcontrib>Tziritas, G.</creatorcontrib><title>Signal segmentation and modelling based on EquiPartition principle</title><title>2009 16th International Conference on Digital Signal Processing</title><addtitle>ICDSP</addtitle><description>In this paper, we propose a method for time interval segmentation of signals based on an equipartition principle (EP). According to EP, the signal is segmented into segments that give equal errors in reconstruction selecting the most suitable model to describe each segment. Moreover, the segments are equivalent in the content domain, since the signal is segmented into segments that are modelled by the same number of coefficients. The proposed method has been successfully applied on different types of signals like: physiologic, speech, human motion, financial time series. Finally, the proposed methodology is very flexible on changes of error criteria, signal modelling and on signal dimension yielding a robust method for segmentation and modelling of signals.</description><subject>Computer errors</subject><subject>Computer science</subject><subject>equipartition</subject><subject>Euclidean distance</subject><subject>Humans</subject><subject>Pattern recognition</subject><subject>Robustness</subject><subject>Signal analysis</subject><subject>signal modelling</subject><subject>Signal segmentation</subject><subject>Speech</subject><subject>Time frequency analysis</subject><subject>Time series analysis</subject><issn>1546-1874</issn><issn>2165-3577</issn><isbn>9781424432974</isbn><isbn>1424432979</isbn><isbn>1424432987</isbn><isbn>9781424432981</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAQRc2jEmnJD8AmP5Dgx_i1hLRApUpUKqwrJ3Yio8QtSVjw9xgosxnp3qszV4PQDcEFIVjfrcvlbltQjHXBKY4SP0NzAhSAUa3kOUooETxnXMoLlGqp_j0JlyghHEROlIQZmkeG0lhToa9QOo7vOA5wFskJetj5NpguG13buzCZyR9CZoLN-oN1XedDm1VmdDaL8urj02_NMPnf0HHwofbHzl2jWWO60aWnvUBvj6vX8jnfvDyty_tN7gkDnjtVEdCxh6GMaGMoNLUFYyvBrWaucVJxAFP9mCCIUI2OacUZqTGoWrEFuv3jeufcPp7vzfC1P_2GfQOk8lC6</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Panagiotakis, C.</creator><creator>Tziritas, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>Signal segmentation and modelling based on EquiPartition principle</title><author>Panagiotakis, C. ; Tziritas, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1345-e8b149909a2319aa24fcd4adb65d93efe78544ab319a46168f99908531c048c83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer errors</topic><topic>Computer science</topic><topic>equipartition</topic><topic>Euclidean distance</topic><topic>Humans</topic><topic>Pattern recognition</topic><topic>Robustness</topic><topic>Signal analysis</topic><topic>signal modelling</topic><topic>Signal segmentation</topic><topic>Speech</topic><topic>Time frequency analysis</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Panagiotakis, C.</creatorcontrib><creatorcontrib>Tziritas, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Panagiotakis, C.</au><au>Tziritas, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Signal segmentation and modelling based on EquiPartition principle</atitle><btitle>2009 16th International Conference on Digital Signal Processing</btitle><stitle>ICDSP</stitle><date>2009-07</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1546-1874</issn><eissn>2165-3577</eissn><isbn>9781424432974</isbn><isbn>1424432979</isbn><eisbn>1424432987</eisbn><eisbn>9781424432981</eisbn><abstract>In this paper, we propose a method for time interval segmentation of signals based on an equipartition principle (EP). According to EP, the signal is segmented into segments that give equal errors in reconstruction selecting the most suitable model to describe each segment. Moreover, the segments are equivalent in the content domain, since the signal is segmented into segments that are modelled by the same number of coefficients. The proposed method has been successfully applied on different types of signals like: physiologic, speech, human motion, financial time series. Finally, the proposed methodology is very flexible on changes of error criteria, signal modelling and on signal dimension yielding a robust method for segmentation and modelling of signals.</abstract><pub>IEEE</pub><doi>10.1109/ICDSP.2009.5201105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1546-1874
ispartof 2009 16th International Conference on Digital Signal Processing, 2009, p.1-6
issn 1546-1874
2165-3577
language eng
recordid cdi_ieee_primary_5201105
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer errors
Computer science
equipartition
Euclidean distance
Humans
Pattern recognition
Robustness
Signal analysis
signal modelling
Signal segmentation
Speech
Time frequency analysis
Time series analysis
title Signal segmentation and modelling based on EquiPartition principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Signal%20segmentation%20and%20modelling%20based%20on%20EquiPartition%20principle&rft.btitle=2009%2016th%20International%20Conference%20on%20Digital%20Signal%20Processing&rft.au=Panagiotakis,%20C.&rft.date=2009-07&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1546-1874&rft.eissn=2165-3577&rft.isbn=9781424432974&rft.isbn_list=1424432979&rft_id=info:doi/10.1109/ICDSP.2009.5201105&rft_dat=%3Cieee_6IE%3E5201105%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424432987&rft.eisbn_list=9781424432981&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5201105&rfr_iscdi=true