Signal segmentation and modelling based on EquiPartition principle
In this paper, we propose a method for time interval segmentation of signals based on an equipartition principle (EP). According to EP, the signal is segmented into segments that give equal errors in reconstruction selecting the most suitable model to describe each segment. Moreover, the segments ar...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Panagiotakis, C. Tziritas, G. |
description | In this paper, we propose a method for time interval segmentation of signals based on an equipartition principle (EP). According to EP, the signal is segmented into segments that give equal errors in reconstruction selecting the most suitable model to describe each segment. Moreover, the segments are equivalent in the content domain, since the signal is segmented into segments that are modelled by the same number of coefficients. The proposed method has been successfully applied on different types of signals like: physiologic, speech, human motion, financial time series. Finally, the proposed methodology is very flexible on changes of error criteria, signal modelling and on signal dimension yielding a robust method for segmentation and modelling of signals. |
doi_str_mv | 10.1109/ICDSP.2009.5201105 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5201105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5201105</ieee_id><sourcerecordid>5201105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1345-e8b149909a2319aa24fcd4adb65d93efe78544ab319a46168f99908531c048c83</originalsourceid><addsrcrecordid>eNo1kMtOwzAQRc2jEmnJD8AmP5Dgx_i1hLRApUpUKqwrJ3Yio8QtSVjw9xgosxnp3qszV4PQDcEFIVjfrcvlbltQjHXBKY4SP0NzAhSAUa3kOUooETxnXMoLlGqp_j0JlyghHEROlIQZmkeG0lhToa9QOo7vOA5wFskJetj5NpguG13buzCZyR9CZoLN-oN1XedDm1VmdDaL8urj02_NMPnf0HHwofbHzl2jWWO60aWnvUBvj6vX8jnfvDyty_tN7gkDnjtVEdCxh6GMaGMoNLUFYyvBrWaucVJxAFP9mCCIUI2OacUZqTGoWrEFuv3jeufcPp7vzfC1P_2GfQOk8lC6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Signal segmentation and modelling based on EquiPartition principle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Panagiotakis, C. ; Tziritas, G.</creator><creatorcontrib>Panagiotakis, C. ; Tziritas, G.</creatorcontrib><description>In this paper, we propose a method for time interval segmentation of signals based on an equipartition principle (EP). According to EP, the signal is segmented into segments that give equal errors in reconstruction selecting the most suitable model to describe each segment. Moreover, the segments are equivalent in the content domain, since the signal is segmented into segments that are modelled by the same number of coefficients. The proposed method has been successfully applied on different types of signals like: physiologic, speech, human motion, financial time series. Finally, the proposed methodology is very flexible on changes of error criteria, signal modelling and on signal dimension yielding a robust method for segmentation and modelling of signals.</description><identifier>ISSN: 1546-1874</identifier><identifier>ISBN: 9781424432974</identifier><identifier>ISBN: 1424432979</identifier><identifier>EISSN: 2165-3577</identifier><identifier>EISBN: 1424432987</identifier><identifier>EISBN: 9781424432981</identifier><identifier>DOI: 10.1109/ICDSP.2009.5201105</identifier><identifier>LCCN: 2008909269</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer errors ; Computer science ; equipartition ; Euclidean distance ; Humans ; Pattern recognition ; Robustness ; Signal analysis ; signal modelling ; Signal segmentation ; Speech ; Time frequency analysis ; Time series analysis</subject><ispartof>2009 16th International Conference on Digital Signal Processing, 2009, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5201105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5201105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Panagiotakis, C.</creatorcontrib><creatorcontrib>Tziritas, G.</creatorcontrib><title>Signal segmentation and modelling based on EquiPartition principle</title><title>2009 16th International Conference on Digital Signal Processing</title><addtitle>ICDSP</addtitle><description>In this paper, we propose a method for time interval segmentation of signals based on an equipartition principle (EP). According to EP, the signal is segmented into segments that give equal errors in reconstruction selecting the most suitable model to describe each segment. Moreover, the segments are equivalent in the content domain, since the signal is segmented into segments that are modelled by the same number of coefficients. The proposed method has been successfully applied on different types of signals like: physiologic, speech, human motion, financial time series. Finally, the proposed methodology is very flexible on changes of error criteria, signal modelling and on signal dimension yielding a robust method for segmentation and modelling of signals.</description><subject>Computer errors</subject><subject>Computer science</subject><subject>equipartition</subject><subject>Euclidean distance</subject><subject>Humans</subject><subject>Pattern recognition</subject><subject>Robustness</subject><subject>Signal analysis</subject><subject>signal modelling</subject><subject>Signal segmentation</subject><subject>Speech</subject><subject>Time frequency analysis</subject><subject>Time series analysis</subject><issn>1546-1874</issn><issn>2165-3577</issn><isbn>9781424432974</isbn><isbn>1424432979</isbn><isbn>1424432987</isbn><isbn>9781424432981</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAQRc2jEmnJD8AmP5Dgx_i1hLRApUpUKqwrJ3Yio8QtSVjw9xgosxnp3qszV4PQDcEFIVjfrcvlbltQjHXBKY4SP0NzAhSAUa3kOUooETxnXMoLlGqp_j0JlyghHEROlIQZmkeG0lhToa9QOo7vOA5wFskJetj5NpguG13buzCZyR9CZoLN-oN1XedDm1VmdDaL8urj02_NMPnf0HHwofbHzl2jWWO60aWnvUBvj6vX8jnfvDyty_tN7gkDnjtVEdCxh6GMaGMoNLUFYyvBrWaucVJxAFP9mCCIUI2OacUZqTGoWrEFuv3jeufcPp7vzfC1P_2GfQOk8lC6</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Panagiotakis, C.</creator><creator>Tziritas, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>Signal segmentation and modelling based on EquiPartition principle</title><author>Panagiotakis, C. ; Tziritas, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1345-e8b149909a2319aa24fcd4adb65d93efe78544ab319a46168f99908531c048c83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer errors</topic><topic>Computer science</topic><topic>equipartition</topic><topic>Euclidean distance</topic><topic>Humans</topic><topic>Pattern recognition</topic><topic>Robustness</topic><topic>Signal analysis</topic><topic>signal modelling</topic><topic>Signal segmentation</topic><topic>Speech</topic><topic>Time frequency analysis</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Panagiotakis, C.</creatorcontrib><creatorcontrib>Tziritas, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Panagiotakis, C.</au><au>Tziritas, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Signal segmentation and modelling based on EquiPartition principle</atitle><btitle>2009 16th International Conference on Digital Signal Processing</btitle><stitle>ICDSP</stitle><date>2009-07</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1546-1874</issn><eissn>2165-3577</eissn><isbn>9781424432974</isbn><isbn>1424432979</isbn><eisbn>1424432987</eisbn><eisbn>9781424432981</eisbn><abstract>In this paper, we propose a method for time interval segmentation of signals based on an equipartition principle (EP). According to EP, the signal is segmented into segments that give equal errors in reconstruction selecting the most suitable model to describe each segment. Moreover, the segments are equivalent in the content domain, since the signal is segmented into segments that are modelled by the same number of coefficients. The proposed method has been successfully applied on different types of signals like: physiologic, speech, human motion, financial time series. Finally, the proposed methodology is very flexible on changes of error criteria, signal modelling and on signal dimension yielding a robust method for segmentation and modelling of signals.</abstract><pub>IEEE</pub><doi>10.1109/ICDSP.2009.5201105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1546-1874 |
ispartof | 2009 16th International Conference on Digital Signal Processing, 2009, p.1-6 |
issn | 1546-1874 2165-3577 |
language | eng |
recordid | cdi_ieee_primary_5201105 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer errors Computer science equipartition Euclidean distance Humans Pattern recognition Robustness Signal analysis signal modelling Signal segmentation Speech Time frequency analysis Time series analysis |
title | Signal segmentation and modelling based on EquiPartition principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Signal%20segmentation%20and%20modelling%20based%20on%20EquiPartition%20principle&rft.btitle=2009%2016th%20International%20Conference%20on%20Digital%20Signal%20Processing&rft.au=Panagiotakis,%20C.&rft.date=2009-07&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1546-1874&rft.eissn=2165-3577&rft.isbn=9781424432974&rft.isbn_list=1424432979&rft_id=info:doi/10.1109/ICDSP.2009.5201105&rft_dat=%3Cieee_6IE%3E5201105%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424432987&rft.eisbn_list=9781424432981&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5201105&rfr_iscdi=true |