A new approach for spoken language identification based on sequence kernel SVMs

A new back-end classifier for GMM-LM based language identification systems is proposed in this paper. The proposed system consists of a mapping matrix and a back-end classifier of SVMs as its main parts, located in series after the GMM-LM system. While the mapping matrix maps the language model'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ziaei, A., Ahadi, S.M., Yeganeh, H., Mirrezaie, S.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Ziaei, A.
Ahadi, S.M.
Yeganeh, H.
Mirrezaie, S.M.
description A new back-end classifier for GMM-LM based language identification systems is proposed in this paper. The proposed system consists of a mapping matrix and a back-end classifier of SVMs as its main parts, located in series after the GMM-LM system. While the mapping matrix maps the language model's output vectors to a new space in which the languages are more separable than before, each SVM in the SVM bank-end classifier separates one language from the others. A new sequence kernel is used for each SVM in the bank-end classifier. As a final stage, a fusion block carries out the task of fusing the SVM bank-end scores with those of the GMM-based LID to achieve higher accuracies. We show that not only our new sequence kernel-based SVMs separate languages more efficiently than common Gaussian mixture and GLDS SVM back-end classifiers, but also our new mapping matrix outperforms common linear discriminant matrix in separating classes from each other and finally the introduction of fusion block leads to even superior performance. The overall accuracy of the LID is noticeably increased in comparison with the other LDA-GMM and LDAGLDS SVM back-end classifiers. Our experiments on 5 languages from OGI-TS multilanguage task prove our claim.
doi_str_mv 10.1109/ICDSP.2009.5201071
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5201071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5201071</ieee_id><sourcerecordid>5201071</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c61904cc29a156a86c1f059cb61d720d3664d36630d5b062dcccd8aaf803cde3</originalsourceid><addsrcrecordid>eNo1kNtOAjEYhOuBREBeQG_6Aot_z-0lwRMJBhOMt6S0_-IKdtctxPj2rhHnYmaSSb6LIeSKwZgxcDez6e3yecwB3FhxYGDYCRkwyaUU3FlzSvqcaVUIZcwZGTlj_zcjz0mfKakLZo3skUHHsA4c1-6CjHJ-h05SiY7cJ4sJTfhFfdO0tQ9vtKxbmpt6i4nufNoc_AZpFTHtq7IKfl_Via59xki7kvHzgCkg3WKbcEeXr0_5kvRKv8s4OuaQLO_vXqaPxXzxMJtO5kXlYF8EzRzIELjzTGlvdWAlKBfWmkXDIQqt5a8JiGoNmscQQrTelxZEiCiG5PqPWiHiqmmrD99-r443iR-aaFVN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new approach for spoken language identification based on sequence kernel SVMs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ziaei, A. ; Ahadi, S.M. ; Yeganeh, H. ; Mirrezaie, S.M.</creator><creatorcontrib>Ziaei, A. ; Ahadi, S.M. ; Yeganeh, H. ; Mirrezaie, S.M.</creatorcontrib><description>A new back-end classifier for GMM-LM based language identification systems is proposed in this paper. The proposed system consists of a mapping matrix and a back-end classifier of SVMs as its main parts, located in series after the GMM-LM system. While the mapping matrix maps the language model's output vectors to a new space in which the languages are more separable than before, each SVM in the SVM bank-end classifier separates one language from the others. A new sequence kernel is used for each SVM in the bank-end classifier. As a final stage, a fusion block carries out the task of fusing the SVM bank-end scores with those of the GMM-based LID to achieve higher accuracies. We show that not only our new sequence kernel-based SVMs separate languages more efficiently than common Gaussian mixture and GLDS SVM back-end classifiers, but also our new mapping matrix outperforms common linear discriminant matrix in separating classes from each other and finally the introduction of fusion block leads to even superior performance. The overall accuracy of the LID is noticeably increased in comparison with the other LDA-GMM and LDAGLDS SVM back-end classifiers. Our experiments on 5 languages from OGI-TS multilanguage task prove our claim.</description><identifier>ISSN: 1546-1874</identifier><identifier>ISBN: 9781424432974</identifier><identifier>ISBN: 1424432979</identifier><identifier>EISSN: 2165-3577</identifier><identifier>EISBN: 1424432987</identifier><identifier>EISBN: 9781424432981</identifier><identifier>DOI: 10.1109/ICDSP.2009.5201071</identifier><identifier>LCCN: 2008909269</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cepstral analysis ; Entropy ; Feature extraction ; Gaussian Mixture Models ; Kernel ; Laboratories ; Language Identification ; Mel frequency cepstral coefficient ; Natural languages ; Speech processing ; Support vector machine classification ; Support vector machines</subject><ispartof>2009 16th International Conference on Digital Signal Processing, 2009, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5201071$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5201071$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ziaei, A.</creatorcontrib><creatorcontrib>Ahadi, S.M.</creatorcontrib><creatorcontrib>Yeganeh, H.</creatorcontrib><creatorcontrib>Mirrezaie, S.M.</creatorcontrib><title>A new approach for spoken language identification based on sequence kernel SVMs</title><title>2009 16th International Conference on Digital Signal Processing</title><addtitle>ICDSP</addtitle><description>A new back-end classifier for GMM-LM based language identification systems is proposed in this paper. The proposed system consists of a mapping matrix and a back-end classifier of SVMs as its main parts, located in series after the GMM-LM system. While the mapping matrix maps the language model's output vectors to a new space in which the languages are more separable than before, each SVM in the SVM bank-end classifier separates one language from the others. A new sequence kernel is used for each SVM in the bank-end classifier. As a final stage, a fusion block carries out the task of fusing the SVM bank-end scores with those of the GMM-based LID to achieve higher accuracies. We show that not only our new sequence kernel-based SVMs separate languages more efficiently than common Gaussian mixture and GLDS SVM back-end classifiers, but also our new mapping matrix outperforms common linear discriminant matrix in separating classes from each other and finally the introduction of fusion block leads to even superior performance. The overall accuracy of the LID is noticeably increased in comparison with the other LDA-GMM and LDAGLDS SVM back-end classifiers. Our experiments on 5 languages from OGI-TS multilanguage task prove our claim.</description><subject>Cepstral analysis</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Gaussian Mixture Models</subject><subject>Kernel</subject><subject>Laboratories</subject><subject>Language Identification</subject><subject>Mel frequency cepstral coefficient</subject><subject>Natural languages</subject><subject>Speech processing</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1546-1874</issn><issn>2165-3577</issn><isbn>9781424432974</isbn><isbn>1424432979</isbn><isbn>1424432987</isbn><isbn>9781424432981</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtOAjEYhOuBREBeQG_6Aot_z-0lwRMJBhOMt6S0_-IKdtctxPj2rhHnYmaSSb6LIeSKwZgxcDez6e3yecwB3FhxYGDYCRkwyaUU3FlzSvqcaVUIZcwZGTlj_zcjz0mfKakLZo3skUHHsA4c1-6CjHJ-h05SiY7cJ4sJTfhFfdO0tQ9vtKxbmpt6i4nufNoc_AZpFTHtq7IKfl_Via59xki7kvHzgCkg3WKbcEeXr0_5kvRKv8s4OuaQLO_vXqaPxXzxMJtO5kXlYF8EzRzIELjzTGlvdWAlKBfWmkXDIQqt5a8JiGoNmscQQrTelxZEiCiG5PqPWiHiqmmrD99-r443iR-aaFVN</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Ziaei, A.</creator><creator>Ahadi, S.M.</creator><creator>Yeganeh, H.</creator><creator>Mirrezaie, S.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>A new approach for spoken language identification based on sequence kernel SVMs</title><author>Ziaei, A. ; Ahadi, S.M. ; Yeganeh, H. ; Mirrezaie, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c61904cc29a156a86c1f059cb61d720d3664d36630d5b062dcccd8aaf803cde3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cepstral analysis</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Gaussian Mixture Models</topic><topic>Kernel</topic><topic>Laboratories</topic><topic>Language Identification</topic><topic>Mel frequency cepstral coefficient</topic><topic>Natural languages</topic><topic>Speech processing</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Ziaei, A.</creatorcontrib><creatorcontrib>Ahadi, S.M.</creatorcontrib><creatorcontrib>Yeganeh, H.</creatorcontrib><creatorcontrib>Mirrezaie, S.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ziaei, A.</au><au>Ahadi, S.M.</au><au>Yeganeh, H.</au><au>Mirrezaie, S.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new approach for spoken language identification based on sequence kernel SVMs</atitle><btitle>2009 16th International Conference on Digital Signal Processing</btitle><stitle>ICDSP</stitle><date>2009-07</date><risdate>2009</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1546-1874</issn><eissn>2165-3577</eissn><isbn>9781424432974</isbn><isbn>1424432979</isbn><eisbn>1424432987</eisbn><eisbn>9781424432981</eisbn><abstract>A new back-end classifier for GMM-LM based language identification systems is proposed in this paper. The proposed system consists of a mapping matrix and a back-end classifier of SVMs as its main parts, located in series after the GMM-LM system. While the mapping matrix maps the language model's output vectors to a new space in which the languages are more separable than before, each SVM in the SVM bank-end classifier separates one language from the others. A new sequence kernel is used for each SVM in the bank-end classifier. As a final stage, a fusion block carries out the task of fusing the SVM bank-end scores with those of the GMM-based LID to achieve higher accuracies. We show that not only our new sequence kernel-based SVMs separate languages more efficiently than common Gaussian mixture and GLDS SVM back-end classifiers, but also our new mapping matrix outperforms common linear discriminant matrix in separating classes from each other and finally the introduction of fusion block leads to even superior performance. The overall accuracy of the LID is noticeably increased in comparison with the other LDA-GMM and LDAGLDS SVM back-end classifiers. Our experiments on 5 languages from OGI-TS multilanguage task prove our claim.</abstract><pub>IEEE</pub><doi>10.1109/ICDSP.2009.5201071</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1546-1874
ispartof 2009 16th International Conference on Digital Signal Processing, 2009, p.1-4
issn 1546-1874
2165-3577
language eng
recordid cdi_ieee_primary_5201071
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cepstral analysis
Entropy
Feature extraction
Gaussian Mixture Models
Kernel
Laboratories
Language Identification
Mel frequency cepstral coefficient
Natural languages
Speech processing
Support vector machine classification
Support vector machines
title A new approach for spoken language identification based on sequence kernel SVMs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20approach%20for%20spoken%20language%20identification%20based%20on%20sequence%20kernel%20SVMs&rft.btitle=2009%2016th%20International%20Conference%20on%20Digital%20Signal%20Processing&rft.au=Ziaei,%20A.&rft.date=2009-07&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1546-1874&rft.eissn=2165-3577&rft.isbn=9781424432974&rft.isbn_list=1424432979&rft_id=info:doi/10.1109/ICDSP.2009.5201071&rft_dat=%3Cieee_6IE%3E5201071%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424432987&rft.eisbn_list=9781424432981&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5201071&rfr_iscdi=true