The Application of Epsilon-SVR in Infrared Temperature Demarcating

A epsiv-SVR (epsiv-Support Vector Regression) based modeling method is introduced to process data acquired from infrared temperature demarcating experiment. In the process of the temperature of black body ranging from 30degC to 72degC, 22 groups of samples are acquired, which include 17 groups of tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sun, Jian, Chen, Liang, Fu, Yaqiong, Wu, Juan, Chen, Le
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue
container_start_page 25
container_title
container_volume 1
creator Sun, Jian
Chen, Liang
Fu, Yaqiong
Wu, Juan
Chen, Le
description A epsiv-SVR (epsiv-Support Vector Regression) based modeling method is introduced to process data acquired from infrared temperature demarcating experiment. In the process of the temperature of black body ranging from 30degC to 72degC, 22 groups of samples are acquired, which include 17 groups of training samples and 5 groups of forecasting samples. The fitting curves are got through training samples and forecasting samples under MATLAB. Compared with traditional method of least square, the precision of this method is far higher. In conclusion, the method of epsiv-SVR can become a method of data processing to infrared temperature demarcating.
doi_str_mv 10.1109/APCIP.2009.14
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5196986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5196986</ieee_id><sourcerecordid>5196986</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f666c2097017621e366fa0f41091c5528dfb226eb8e41e39028a64e0950d42db3</originalsourceid><addsrcrecordid>eNotj8FOhDAURZuYSdSRpSs3_QHG10Jf6RJxVJJJnCi6nRR41RoGSMGFfy8TXd3Fyb25h7FrARshwNzm-6LcbySA2Yj0jEVGZ6DRqASNwRW7PBEDiZBwzqJp-gIAYVBLkVywu-qTeD6OnW_s7IeeD45vx8l3Qx-_vr9w3_Oyd8EGanlFx5GCnb8D8Xs62nCq9B9XbOVsN1H0n2v29rCtiqd49_xYFvku9kKrOXaI2EgwGoRGKShBdBZcuhiIRimZta6WEqnOKF2oAZlZTAmMgjaVbZ2s2c3frieiwxj88uDnoBYVk2HyC_TMSOI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Application of Epsilon-SVR in Infrared Temperature Demarcating</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sun, Jian ; Chen, Liang ; Fu, Yaqiong ; Wu, Juan ; Chen, Le</creator><creatorcontrib>Sun, Jian ; Chen, Liang ; Fu, Yaqiong ; Wu, Juan ; Chen, Le</creatorcontrib><description>A epsiv-SVR (epsiv-Support Vector Regression) based modeling method is introduced to process data acquired from infrared temperature demarcating experiment. In the process of the temperature of black body ranging from 30degC to 72degC, 22 groups of samples are acquired, which include 17 groups of training samples and 5 groups of forecasting samples. The fitting curves are got through training samples and forecasting samples under MATLAB. Compared with traditional method of least square, the precision of this method is far higher. In conclusion, the method of epsiv-SVR can become a method of data processing to infrared temperature demarcating.</description><identifier>ISBN: 9780769536996</identifier><identifier>ISBN: 0769536999</identifier><identifier>DOI: 10.1109/APCIP.2009.14</identifier><identifier>LCCN: 2009903120</identifier><language>eng</language><publisher>IEEE</publisher><subject>Curve fitting ; Information processing ; Infrared detectors ; Infrared imaging ; infrared temperature demarcating ; Least squares methods ; Mathematical model ; Power system reliability ; Support vector machine classification ; Support vector machines ; Temperature measurement ; ε -SVR</subject><ispartof>2009 Asia-Pacific Conference on Information Processing, 2009, Vol.1, p.25-27</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5196986$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27903,54897</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5196986$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Fu, Yaqiong</creatorcontrib><creatorcontrib>Wu, Juan</creatorcontrib><creatorcontrib>Chen, Le</creatorcontrib><title>The Application of Epsilon-SVR in Infrared Temperature Demarcating</title><title>2009 Asia-Pacific Conference on Information Processing</title><addtitle>APCIP</addtitle><description>A epsiv-SVR (epsiv-Support Vector Regression) based modeling method is introduced to process data acquired from infrared temperature demarcating experiment. In the process of the temperature of black body ranging from 30degC to 72degC, 22 groups of samples are acquired, which include 17 groups of training samples and 5 groups of forecasting samples. The fitting curves are got through training samples and forecasting samples under MATLAB. Compared with traditional method of least square, the precision of this method is far higher. In conclusion, the method of epsiv-SVR can become a method of data processing to infrared temperature demarcating.</description><subject>Curve fitting</subject><subject>Information processing</subject><subject>Infrared detectors</subject><subject>Infrared imaging</subject><subject>infrared temperature demarcating</subject><subject>Least squares methods</subject><subject>Mathematical model</subject><subject>Power system reliability</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Temperature measurement</subject><subject>ε -SVR</subject><isbn>9780769536996</isbn><isbn>0769536999</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FOhDAURZuYSdSRpSs3_QHG10Jf6RJxVJJJnCi6nRR41RoGSMGFfy8TXd3Fyb25h7FrARshwNzm-6LcbySA2Yj0jEVGZ6DRqASNwRW7PBEDiZBwzqJp-gIAYVBLkVywu-qTeD6OnW_s7IeeD45vx8l3Qx-_vr9w3_Oyd8EGanlFx5GCnb8D8Xs62nCq9B9XbOVsN1H0n2v29rCtiqd49_xYFvku9kKrOXaI2EgwGoRGKShBdBZcuhiIRimZta6WEqnOKF2oAZlZTAmMgjaVbZ2s2c3frieiwxj88uDnoBYVk2HyC_TMSOI</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Sun, Jian</creator><creator>Chen, Liang</creator><creator>Fu, Yaqiong</creator><creator>Wu, Juan</creator><creator>Chen, Le</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200907</creationdate><title>The Application of Epsilon-SVR in Infrared Temperature Demarcating</title><author>Sun, Jian ; Chen, Liang ; Fu, Yaqiong ; Wu, Juan ; Chen, Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f666c2097017621e366fa0f41091c5528dfb226eb8e41e39028a64e0950d42db3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Curve fitting</topic><topic>Information processing</topic><topic>Infrared detectors</topic><topic>Infrared imaging</topic><topic>infrared temperature demarcating</topic><topic>Least squares methods</topic><topic>Mathematical model</topic><topic>Power system reliability</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Temperature measurement</topic><topic>ε -SVR</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Fu, Yaqiong</creatorcontrib><creatorcontrib>Wu, Juan</creatorcontrib><creatorcontrib>Chen, Le</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Jian</au><au>Chen, Liang</au><au>Fu, Yaqiong</au><au>Wu, Juan</au><au>Chen, Le</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Application of Epsilon-SVR in Infrared Temperature Demarcating</atitle><btitle>2009 Asia-Pacific Conference on Information Processing</btitle><stitle>APCIP</stitle><date>2009-07</date><risdate>2009</risdate><volume>1</volume><spage>25</spage><epage>27</epage><pages>25-27</pages><isbn>9780769536996</isbn><isbn>0769536999</isbn><abstract>A epsiv-SVR (epsiv-Support Vector Regression) based modeling method is introduced to process data acquired from infrared temperature demarcating experiment. In the process of the temperature of black body ranging from 30degC to 72degC, 22 groups of samples are acquired, which include 17 groups of training samples and 5 groups of forecasting samples. The fitting curves are got through training samples and forecasting samples under MATLAB. Compared with traditional method of least square, the precision of this method is far higher. In conclusion, the method of epsiv-SVR can become a method of data processing to infrared temperature demarcating.</abstract><pub>IEEE</pub><doi>10.1109/APCIP.2009.14</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769536996
ispartof 2009 Asia-Pacific Conference on Information Processing, 2009, Vol.1, p.25-27
issn
language eng
recordid cdi_ieee_primary_5196986
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Curve fitting
Information processing
Infrared detectors
Infrared imaging
infrared temperature demarcating
Least squares methods
Mathematical model
Power system reliability
Support vector machine classification
Support vector machines
Temperature measurement
ε -SVR
title The Application of Epsilon-SVR in Infrared Temperature Demarcating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Application%20of%20Epsilon-SVR%20in%20Infrared%20Temperature%20Demarcating&rft.btitle=2009%20Asia-Pacific%20Conference%20on%20Information%20Processing&rft.au=Sun,%20Jian&rft.date=2009-07&rft.volume=1&rft.spage=25&rft.epage=27&rft.pages=25-27&rft.isbn=9780769536996&rft.isbn_list=0769536999&rft_id=info:doi/10.1109/APCIP.2009.14&rft_dat=%3Cieee_6IE%3E5196986%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5196986&rfr_iscdi=true