Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals
This paper presents a novel clustering technique that has been applied to plasma signals to show its utility. It is a general method based on a partitioning scheme that has been proven to be efficient for purposes of analysis and processing of fusion plasma waveforms. Moreover, this paper shows how...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2009-09, Vol.58 (9), p.2969-2978 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2978 |
---|---|
container_issue | 9 |
container_start_page | 2969 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 58 |
creator | Martin H, J.A. Penas, M.S. Farias, G. Duro, N. Sanchez, J. Dormido, R. Dormido-Canto, S. Vega, J. Vargas, H. |
description | This paper presents a novel clustering technique that has been applied to plasma signals to show its utility. It is a general method based on a partitioning scheme that has been proven to be efficient for purposes of analysis and processing of fusion plasma waveforms. Moreover, this paper shows how the information given by the clustering can be used to produce a concise and representative model of each class of signals by applying different modeling approaches. Neuro-fuzzy identification and time-domain techniques have been used. These models allow the application of procedures to detect anomalous behaviors or interesting events within a continuous data flow that could automatically trigger the execution of some experimental procedures. Previously, an in-depth analysis and a preprocessing phase of the waveforms have been carried out. These procedures have been applied to plasma signals of the TJ-II Stellarator fusion device with encouraging results. |
doi_str_mv | 10.1109/TIM.2009.2016798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5196730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5196730</ieee_id><sourcerecordid>2291707141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-5aeebc2444e5009bbfbd9af9cee9d5a9b0cc316fe9401bfca68e29628f38c96c3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFbvgpfgQbyk7nd2j6W1WmhRsJ6XzWZSU9Kk7jaH_ns3tHjw4GVeBp4ZZh6EbgkeEYL102q-HFGMdSxEZlqdoQERIku1lPQcDTAmKtVcyEt0FcIGY5xJng3QdHpo7LZyyaTuwh581awT2xTJsi2g7pvxbudb674gJGXrk1kXqrZJ3msbtjb5qNaNrcM1uihjwM0ph-hz9ryavKaLt5f5ZLxIHRN8nwoLkDvKOQcRL83zMi-0LbUD0IWwOsfOMSJL0ByTvHRWKqBaUlUy5bR0bIgejnvjSd8dhL3ZVsFBXdsG2i4YxnWmMk0j-PgvGA0RRjGlKqL3f9BN2_n-K6OEVJqKrN-Hj5DzbQgeSrPz1db6gyHY9PpN1G96_eakP47cHUcqAPjFBdEyY5j9ALfygI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856892572</pqid></control><display><type>article</type><title>Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Martin H, J.A. ; Penas, M.S. ; Farias, G. ; Duro, N. ; Sanchez, J. ; Dormido, R. ; Dormido-Canto, S. ; Vega, J. ; Vargas, H.</creator><creatorcontrib>Martin H, J.A. ; Penas, M.S. ; Farias, G. ; Duro, N. ; Sanchez, J. ; Dormido, R. ; Dormido-Canto, S. ; Vega, J. ; Vargas, H.</creatorcontrib><description>This paper presents a novel clustering technique that has been applied to plasma signals to show its utility. It is a general method based on a partitioning scheme that has been proven to be efficient for purposes of analysis and processing of fusion plasma waveforms. Moreover, this paper shows how the information given by the clustering can be used to produce a concise and representative model of each class of signals by applying different modeling approaches. Neuro-fuzzy identification and time-domain techniques have been used. These models allow the application of procedures to detect anomalous behaviors or interesting events within a continuous data flow that could automatically trigger the execution of some experimental procedures. Previously, an in-depth analysis and a preprocessing phase of the waveforms have been carried out. These procedures have been applied to plasma signals of the TJ-II Stellarator fusion device with encouraging results.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2009.2016798</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clustering ; Clustering methods ; Devices ; Dynamic clustering ; Event detection ; fusion plasma signals ; Fusion power generation ; hybridizing intelligent techniques ; Instrumentation ; neuro-fuzzy identification ; Partitioning ; Plasma applications ; Plasma devices ; Plasma materials processing ; Plasma measurements ; Plasma waves ; Preprocessing ; Sampling methods ; signal modeling ; Signal processing ; Stellarators ; Utilities ; Waveforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2009-09, Vol.58 (9), p.2969-2978</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-5aeebc2444e5009bbfbd9af9cee9d5a9b0cc316fe9401bfca68e29628f38c96c3</citedby><cites>FETCH-LOGICAL-c354t-5aeebc2444e5009bbfbd9af9cee9d5a9b0cc316fe9401bfca68e29628f38c96c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5196730$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5196730$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Martin H, J.A.</creatorcontrib><creatorcontrib>Penas, M.S.</creatorcontrib><creatorcontrib>Farias, G.</creatorcontrib><creatorcontrib>Duro, N.</creatorcontrib><creatorcontrib>Sanchez, J.</creatorcontrib><creatorcontrib>Dormido, R.</creatorcontrib><creatorcontrib>Dormido-Canto, S.</creatorcontrib><creatorcontrib>Vega, J.</creatorcontrib><creatorcontrib>Vargas, H.</creatorcontrib><title>Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper presents a novel clustering technique that has been applied to plasma signals to show its utility. It is a general method based on a partitioning scheme that has been proven to be efficient for purposes of analysis and processing of fusion plasma waveforms. Moreover, this paper shows how the information given by the clustering can be used to produce a concise and representative model of each class of signals by applying different modeling approaches. Neuro-fuzzy identification and time-domain techniques have been used. These models allow the application of procedures to detect anomalous behaviors or interesting events within a continuous data flow that could automatically trigger the execution of some experimental procedures. Previously, an in-depth analysis and a preprocessing phase of the waveforms have been carried out. These procedures have been applied to plasma signals of the TJ-II Stellarator fusion device with encouraging results.</description><subject>Clustering</subject><subject>Clustering methods</subject><subject>Devices</subject><subject>Dynamic clustering</subject><subject>Event detection</subject><subject>fusion plasma signals</subject><subject>Fusion power generation</subject><subject>hybridizing intelligent techniques</subject><subject>Instrumentation</subject><subject>neuro-fuzzy identification</subject><subject>Partitioning</subject><subject>Plasma applications</subject><subject>Plasma devices</subject><subject>Plasma materials processing</subject><subject>Plasma measurements</subject><subject>Plasma waves</subject><subject>Preprocessing</subject><subject>Sampling methods</subject><subject>signal modeling</subject><subject>Signal processing</subject><subject>Stellarators</subject><subject>Utilities</subject><subject>Waveforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1Lw0AQhhdRsFbvgpfgQbyk7nd2j6W1WmhRsJ6XzWZSU9Kk7jaH_ns3tHjw4GVeBp4ZZh6EbgkeEYL102q-HFGMdSxEZlqdoQERIku1lPQcDTAmKtVcyEt0FcIGY5xJng3QdHpo7LZyyaTuwh581awT2xTJsi2g7pvxbudb674gJGXrk1kXqrZJ3msbtjb5qNaNrcM1uihjwM0ph-hz9ryavKaLt5f5ZLxIHRN8nwoLkDvKOQcRL83zMi-0LbUD0IWwOsfOMSJL0ByTvHRWKqBaUlUy5bR0bIgejnvjSd8dhL3ZVsFBXdsG2i4YxnWmMk0j-PgvGA0RRjGlKqL3f9BN2_n-K6OEVJqKrN-Hj5DzbQgeSrPz1db6gyHY9PpN1G96_eakP47cHUcqAPjFBdEyY5j9ALfygI4</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Martin H, J.A.</creator><creator>Penas, M.S.</creator><creator>Farias, G.</creator><creator>Duro, N.</creator><creator>Sanchez, J.</creator><creator>Dormido, R.</creator><creator>Dormido-Canto, S.</creator><creator>Vega, J.</creator><creator>Vargas, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090901</creationdate><title>Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals</title><author>Martin H, J.A. ; Penas, M.S. ; Farias, G. ; Duro, N. ; Sanchez, J. ; Dormido, R. ; Dormido-Canto, S. ; Vega, J. ; Vargas, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-5aeebc2444e5009bbfbd9af9cee9d5a9b0cc316fe9401bfca68e29628f38c96c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clustering</topic><topic>Clustering methods</topic><topic>Devices</topic><topic>Dynamic clustering</topic><topic>Event detection</topic><topic>fusion plasma signals</topic><topic>Fusion power generation</topic><topic>hybridizing intelligent techniques</topic><topic>Instrumentation</topic><topic>neuro-fuzzy identification</topic><topic>Partitioning</topic><topic>Plasma applications</topic><topic>Plasma devices</topic><topic>Plasma materials processing</topic><topic>Plasma measurements</topic><topic>Plasma waves</topic><topic>Preprocessing</topic><topic>Sampling methods</topic><topic>signal modeling</topic><topic>Signal processing</topic><topic>Stellarators</topic><topic>Utilities</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin H, J.A.</creatorcontrib><creatorcontrib>Penas, M.S.</creatorcontrib><creatorcontrib>Farias, G.</creatorcontrib><creatorcontrib>Duro, N.</creatorcontrib><creatorcontrib>Sanchez, J.</creatorcontrib><creatorcontrib>Dormido, R.</creatorcontrib><creatorcontrib>Dormido-Canto, S.</creatorcontrib><creatorcontrib>Vega, J.</creatorcontrib><creatorcontrib>Vargas, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martin H, J.A.</au><au>Penas, M.S.</au><au>Farias, G.</au><au>Duro, N.</au><au>Sanchez, J.</au><au>Dormido, R.</au><au>Dormido-Canto, S.</au><au>Vega, J.</au><au>Vargas, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>58</volume><issue>9</issue><spage>2969</spage><epage>2978</epage><pages>2969-2978</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper presents a novel clustering technique that has been applied to plasma signals to show its utility. It is a general method based on a partitioning scheme that has been proven to be efficient for purposes of analysis and processing of fusion plasma waveforms. Moreover, this paper shows how the information given by the clustering can be used to produce a concise and representative model of each class of signals by applying different modeling approaches. Neuro-fuzzy identification and time-domain techniques have been used. These models allow the application of procedures to detect anomalous behaviors or interesting events within a continuous data flow that could automatically trigger the execution of some experimental procedures. Previously, an in-depth analysis and a preprocessing phase of the waveforms have been carried out. These procedures have been applied to plasma signals of the TJ-II Stellarator fusion device with encouraging results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2009.2016798</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2009-09, Vol.58 (9), p.2969-2978 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_5196730 |
source | IEEE Electronic Library (IEL) |
subjects | Clustering Clustering methods Devices Dynamic clustering Event detection fusion plasma signals Fusion power generation hybridizing intelligent techniques Instrumentation neuro-fuzzy identification Partitioning Plasma applications Plasma devices Plasma materials processing Plasma measurements Plasma waves Preprocessing Sampling methods signal modeling Signal processing Stellarators Utilities Waveforms |
title | Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Clustering%20and%20Modeling%20Approaches%20for%20Fusion%20Plasma%20Signals&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Martin%20H,%20J.A.&rft.date=2009-09-01&rft.volume=58&rft.issue=9&rft.spage=2969&rft.epage=2978&rft.pages=2969-2978&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2009.2016798&rft_dat=%3Cproquest_RIE%3E2291707141%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856892572&rft_id=info:pmid/&rft_ieee_id=5196730&rfr_iscdi=true |