Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals

This paper presents a novel clustering technique that has been applied to plasma signals to show its utility. It is a general method based on a partitioning scheme that has been proven to be efficient for purposes of analysis and processing of fusion plasma waveforms. Moreover, this paper shows how...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2009-09, Vol.58 (9), p.2969-2978
Hauptverfasser: Martin H, J.A., Penas, M.S., Farias, G., Duro, N., Sanchez, J., Dormido, R., Dormido-Canto, S., Vega, J., Vargas, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2978
container_issue 9
container_start_page 2969
container_title IEEE transactions on instrumentation and measurement
container_volume 58
creator Martin H, J.A.
Penas, M.S.
Farias, G.
Duro, N.
Sanchez, J.
Dormido, R.
Dormido-Canto, S.
Vega, J.
Vargas, H.
description This paper presents a novel clustering technique that has been applied to plasma signals to show its utility. It is a general method based on a partitioning scheme that has been proven to be efficient for purposes of analysis and processing of fusion plasma waveforms. Moreover, this paper shows how the information given by the clustering can be used to produce a concise and representative model of each class of signals by applying different modeling approaches. Neuro-fuzzy identification and time-domain techniques have been used. These models allow the application of procedures to detect anomalous behaviors or interesting events within a continuous data flow that could automatically trigger the execution of some experimental procedures. Previously, an in-depth analysis and a preprocessing phase of the waveforms have been carried out. These procedures have been applied to plasma signals of the TJ-II Stellarator fusion device with encouraging results.
doi_str_mv 10.1109/TIM.2009.2016798
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5196730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5196730</ieee_id><sourcerecordid>2291707141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-5aeebc2444e5009bbfbd9af9cee9d5a9b0cc316fe9401bfca68e29628f38c96c3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFbvgpfgQbyk7nd2j6W1WmhRsJ6XzWZSU9Kk7jaH_ns3tHjw4GVeBp4ZZh6EbgkeEYL102q-HFGMdSxEZlqdoQERIku1lPQcDTAmKtVcyEt0FcIGY5xJng3QdHpo7LZyyaTuwh581awT2xTJsi2g7pvxbudb674gJGXrk1kXqrZJ3msbtjb5qNaNrcM1uihjwM0ph-hz9ryavKaLt5f5ZLxIHRN8nwoLkDvKOQcRL83zMi-0LbUD0IWwOsfOMSJL0ByTvHRWKqBaUlUy5bR0bIgejnvjSd8dhL3ZVsFBXdsG2i4YxnWmMk0j-PgvGA0RRjGlKqL3f9BN2_n-K6OEVJqKrN-Hj5DzbQgeSrPz1db6gyHY9PpN1G96_eakP47cHUcqAPjFBdEyY5j9ALfygI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856892572</pqid></control><display><type>article</type><title>Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Martin H, J.A. ; Penas, M.S. ; Farias, G. ; Duro, N. ; Sanchez, J. ; Dormido, R. ; Dormido-Canto, S. ; Vega, J. ; Vargas, H.</creator><creatorcontrib>Martin H, J.A. ; Penas, M.S. ; Farias, G. ; Duro, N. ; Sanchez, J. ; Dormido, R. ; Dormido-Canto, S. ; Vega, J. ; Vargas, H.</creatorcontrib><description>This paper presents a novel clustering technique that has been applied to plasma signals to show its utility. It is a general method based on a partitioning scheme that has been proven to be efficient for purposes of analysis and processing of fusion plasma waveforms. Moreover, this paper shows how the information given by the clustering can be used to produce a concise and representative model of each class of signals by applying different modeling approaches. Neuro-fuzzy identification and time-domain techniques have been used. These models allow the application of procedures to detect anomalous behaviors or interesting events within a continuous data flow that could automatically trigger the execution of some experimental procedures. Previously, an in-depth analysis and a preprocessing phase of the waveforms have been carried out. These procedures have been applied to plasma signals of the TJ-II Stellarator fusion device with encouraging results.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2009.2016798</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clustering ; Clustering methods ; Devices ; Dynamic clustering ; Event detection ; fusion plasma signals ; Fusion power generation ; hybridizing intelligent techniques ; Instrumentation ; neuro-fuzzy identification ; Partitioning ; Plasma applications ; Plasma devices ; Plasma materials processing ; Plasma measurements ; Plasma waves ; Preprocessing ; Sampling methods ; signal modeling ; Signal processing ; Stellarators ; Utilities ; Waveforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2009-09, Vol.58 (9), p.2969-2978</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-5aeebc2444e5009bbfbd9af9cee9d5a9b0cc316fe9401bfca68e29628f38c96c3</citedby><cites>FETCH-LOGICAL-c354t-5aeebc2444e5009bbfbd9af9cee9d5a9b0cc316fe9401bfca68e29628f38c96c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5196730$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5196730$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Martin H, J.A.</creatorcontrib><creatorcontrib>Penas, M.S.</creatorcontrib><creatorcontrib>Farias, G.</creatorcontrib><creatorcontrib>Duro, N.</creatorcontrib><creatorcontrib>Sanchez, J.</creatorcontrib><creatorcontrib>Dormido, R.</creatorcontrib><creatorcontrib>Dormido-Canto, S.</creatorcontrib><creatorcontrib>Vega, J.</creatorcontrib><creatorcontrib>Vargas, H.</creatorcontrib><title>Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper presents a novel clustering technique that has been applied to plasma signals to show its utility. It is a general method based on a partitioning scheme that has been proven to be efficient for purposes of analysis and processing of fusion plasma waveforms. Moreover, this paper shows how the information given by the clustering can be used to produce a concise and representative model of each class of signals by applying different modeling approaches. Neuro-fuzzy identification and time-domain techniques have been used. These models allow the application of procedures to detect anomalous behaviors or interesting events within a continuous data flow that could automatically trigger the execution of some experimental procedures. Previously, an in-depth analysis and a preprocessing phase of the waveforms have been carried out. These procedures have been applied to plasma signals of the TJ-II Stellarator fusion device with encouraging results.</description><subject>Clustering</subject><subject>Clustering methods</subject><subject>Devices</subject><subject>Dynamic clustering</subject><subject>Event detection</subject><subject>fusion plasma signals</subject><subject>Fusion power generation</subject><subject>hybridizing intelligent techniques</subject><subject>Instrumentation</subject><subject>neuro-fuzzy identification</subject><subject>Partitioning</subject><subject>Plasma applications</subject><subject>Plasma devices</subject><subject>Plasma materials processing</subject><subject>Plasma measurements</subject><subject>Plasma waves</subject><subject>Preprocessing</subject><subject>Sampling methods</subject><subject>signal modeling</subject><subject>Signal processing</subject><subject>Stellarators</subject><subject>Utilities</subject><subject>Waveforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1Lw0AQhhdRsFbvgpfgQbyk7nd2j6W1WmhRsJ6XzWZSU9Kk7jaH_ns3tHjw4GVeBp4ZZh6EbgkeEYL102q-HFGMdSxEZlqdoQERIku1lPQcDTAmKtVcyEt0FcIGY5xJng3QdHpo7LZyyaTuwh581awT2xTJsi2g7pvxbudb674gJGXrk1kXqrZJ3msbtjb5qNaNrcM1uihjwM0ph-hz9ryavKaLt5f5ZLxIHRN8nwoLkDvKOQcRL83zMi-0LbUD0IWwOsfOMSJL0ByTvHRWKqBaUlUy5bR0bIgejnvjSd8dhL3ZVsFBXdsG2i4YxnWmMk0j-PgvGA0RRjGlKqL3f9BN2_n-K6OEVJqKrN-Hj5DzbQgeSrPz1db6gyHY9PpN1G96_eakP47cHUcqAPjFBdEyY5j9ALfygI4</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Martin H, J.A.</creator><creator>Penas, M.S.</creator><creator>Farias, G.</creator><creator>Duro, N.</creator><creator>Sanchez, J.</creator><creator>Dormido, R.</creator><creator>Dormido-Canto, S.</creator><creator>Vega, J.</creator><creator>Vargas, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090901</creationdate><title>Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals</title><author>Martin H, J.A. ; Penas, M.S. ; Farias, G. ; Duro, N. ; Sanchez, J. ; Dormido, R. ; Dormido-Canto, S. ; Vega, J. ; Vargas, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-5aeebc2444e5009bbfbd9af9cee9d5a9b0cc316fe9401bfca68e29628f38c96c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clustering</topic><topic>Clustering methods</topic><topic>Devices</topic><topic>Dynamic clustering</topic><topic>Event detection</topic><topic>fusion plasma signals</topic><topic>Fusion power generation</topic><topic>hybridizing intelligent techniques</topic><topic>Instrumentation</topic><topic>neuro-fuzzy identification</topic><topic>Partitioning</topic><topic>Plasma applications</topic><topic>Plasma devices</topic><topic>Plasma materials processing</topic><topic>Plasma measurements</topic><topic>Plasma waves</topic><topic>Preprocessing</topic><topic>Sampling methods</topic><topic>signal modeling</topic><topic>Signal processing</topic><topic>Stellarators</topic><topic>Utilities</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin H, J.A.</creatorcontrib><creatorcontrib>Penas, M.S.</creatorcontrib><creatorcontrib>Farias, G.</creatorcontrib><creatorcontrib>Duro, N.</creatorcontrib><creatorcontrib>Sanchez, J.</creatorcontrib><creatorcontrib>Dormido, R.</creatorcontrib><creatorcontrib>Dormido-Canto, S.</creatorcontrib><creatorcontrib>Vega, J.</creatorcontrib><creatorcontrib>Vargas, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martin H, J.A.</au><au>Penas, M.S.</au><au>Farias, G.</au><au>Duro, N.</au><au>Sanchez, J.</au><au>Dormido, R.</au><au>Dormido-Canto, S.</au><au>Vega, J.</au><au>Vargas, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>58</volume><issue>9</issue><spage>2969</spage><epage>2978</epage><pages>2969-2978</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper presents a novel clustering technique that has been applied to plasma signals to show its utility. It is a general method based on a partitioning scheme that has been proven to be efficient for purposes of analysis and processing of fusion plasma waveforms. Moreover, this paper shows how the information given by the clustering can be used to produce a concise and representative model of each class of signals by applying different modeling approaches. Neuro-fuzzy identification and time-domain techniques have been used. These models allow the application of procedures to detect anomalous behaviors or interesting events within a continuous data flow that could automatically trigger the execution of some experimental procedures. Previously, an in-depth analysis and a preprocessing phase of the waveforms have been carried out. These procedures have been applied to plasma signals of the TJ-II Stellarator fusion device with encouraging results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2009.2016798</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2009-09, Vol.58 (9), p.2969-2978
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_5196730
source IEEE Electronic Library (IEL)
subjects Clustering
Clustering methods
Devices
Dynamic clustering
Event detection
fusion plasma signals
Fusion power generation
hybridizing intelligent techniques
Instrumentation
neuro-fuzzy identification
Partitioning
Plasma applications
Plasma devices
Plasma materials processing
Plasma measurements
Plasma waves
Preprocessing
Sampling methods
signal modeling
Signal processing
Stellarators
Utilities
Waveforms
title Dynamic Clustering and Modeling Approaches for Fusion Plasma Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Clustering%20and%20Modeling%20Approaches%20for%20Fusion%20Plasma%20Signals&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Martin%20H,%20J.A.&rft.date=2009-09-01&rft.volume=58&rft.issue=9&rft.spage=2969&rft.epage=2978&rft.pages=2969-2978&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2009.2016798&rft_dat=%3Cproquest_RIE%3E2291707141%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856892572&rft_id=info:pmid/&rft_ieee_id=5196730&rfr_iscdi=true