Paths of least flow-resistance: Characterization for the optimization of synthetic tissue scaffold design
A method for the analysis of preferred fluid movement into and out of porous specimen's pore networks has been developed that characterizes the flow pathways inside a pore network, an important property for the design of future synthetic tissue scaffolds. Current tissue scaffolds rely on diffus...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 609 |
---|---|
container_issue | |
container_start_page | 606 |
container_title | |
container_volume | |
creator | Kline, T.L. Ritman, E.L. |
description | A method for the analysis of preferred fluid movement into and out of porous specimen's pore networks has been developed that characterizes the flow pathways inside a pore network, an important property for the design of future synthetic tissue scaffolds. Current tissue scaffolds rely on diffusion as the solute transport mechanism for the sustenance and growth of cells into the scaffold's pore network. Utilizing convective transport induced by periodic scaffold deformation or subjecting the scaffold to a fluid pressure gradient are proposed methods for delivery/removal of nutrients/metabolic waste products. These future designs require an understanding of the flow properties of the designed scaffold. The developed method for characterizing the paths of least flow-resistance is applied to a computer model porous scaffold, a synthetic porous tissue scaffold, and a sea sponge. |
doi_str_mv | 10.1109/ISBI.2009.5193120 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5193120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5193120</ieee_id><sourcerecordid>5193120</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-876c77d25b5279c286293ff57713a32dc26ebeb47cd0b4984d9c4a47052937e43</originalsourceid><addsrcrecordid>eNpFkEtLxDAUheMLHMf5AeImf6A1z6Zxp8VHYUBBXQ9pemMjnWZoIjL-egtWvJsD5zv3LA5CF5TklBJ9Vb_c1jkjROeSak4ZOUBnVDAhuOZMH6IF1UJmpZDs6B9QcjwDpVl5ilYxfpDp1ESJWCD_bFIXcXC4BxMTdn34ykaIPiYzWLjGVWdGYxOM_tskHwbswohTBzjskt_-mdN_3A-TnbzFycf4CTha41zoW9xOde_DOTpxpo-wmnWJ3u7vXqvHbP30UFc368xTJVNWqsIq1TLZSKa0ZWXBNHdOKkW54ay1rIAGGqFsSxqhS9FqK4xQRE45BYIv0eVvrweAzW70WzPuN_Nk_AdsOFzL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Paths of least flow-resistance: Characterization for the optimization of synthetic tissue scaffold design</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kline, T.L. ; Ritman, E.L.</creator><creatorcontrib>Kline, T.L. ; Ritman, E.L.</creatorcontrib><description>A method for the analysis of preferred fluid movement into and out of porous specimen's pore networks has been developed that characterizes the flow pathways inside a pore network, an important property for the design of future synthetic tissue scaffolds. Current tissue scaffolds rely on diffusion as the solute transport mechanism for the sustenance and growth of cells into the scaffold's pore network. Utilizing convective transport induced by periodic scaffold deformation or subjecting the scaffold to a fluid pressure gradient are proposed methods for delivery/removal of nutrients/metabolic waste products. These future designs require an understanding of the flow properties of the designed scaffold. The developed method for characterizing the paths of least flow-resistance is applied to a computer model porous scaffold, a synthetic porous tissue scaffold, and a sea sponge.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424439310</identifier><identifier>ISBN: 9781424439317</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1424439329</identifier><identifier>EISBN: 9781424439324</identifier><identifier>DOI: 10.1109/ISBI.2009.5193120</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biological materials ; Biomedical imaging ; Design optimization ; Fast Marching ; Geometry ; Hagen-Poiseuille ; Image analysis ; Mathematical model ; Porous Materials ; Sea Sponge ; Skeletonization ; Solid modeling ; Tissue engineering ; Visualization</subject><ispartof>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.606-609</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5193120$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5193120$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kline, T.L.</creatorcontrib><creatorcontrib>Ritman, E.L.</creatorcontrib><title>Paths of least flow-resistance: Characterization for the optimization of synthetic tissue scaffold design</title><title>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>A method for the analysis of preferred fluid movement into and out of porous specimen's pore networks has been developed that characterizes the flow pathways inside a pore network, an important property for the design of future synthetic tissue scaffolds. Current tissue scaffolds rely on diffusion as the solute transport mechanism for the sustenance and growth of cells into the scaffold's pore network. Utilizing convective transport induced by periodic scaffold deformation or subjecting the scaffold to a fluid pressure gradient are proposed methods for delivery/removal of nutrients/metabolic waste products. These future designs require an understanding of the flow properties of the designed scaffold. The developed method for characterizing the paths of least flow-resistance is applied to a computer model porous scaffold, a synthetic porous tissue scaffold, and a sea sponge.</description><subject>Algorithm design and analysis</subject><subject>Biological materials</subject><subject>Biomedical imaging</subject><subject>Design optimization</subject><subject>Fast Marching</subject><subject>Geometry</subject><subject>Hagen-Poiseuille</subject><subject>Image analysis</subject><subject>Mathematical model</subject><subject>Porous Materials</subject><subject>Sea Sponge</subject><subject>Skeletonization</subject><subject>Solid modeling</subject><subject>Tissue engineering</subject><subject>Visualization</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424439310</isbn><isbn>9781424439317</isbn><isbn>1424439329</isbn><isbn>9781424439324</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLxDAUheMLHMf5AeImf6A1z6Zxp8VHYUBBXQ9pemMjnWZoIjL-egtWvJsD5zv3LA5CF5TklBJ9Vb_c1jkjROeSak4ZOUBnVDAhuOZMH6IF1UJmpZDs6B9QcjwDpVl5ilYxfpDp1ESJWCD_bFIXcXC4BxMTdn34ykaIPiYzWLjGVWdGYxOM_tskHwbswohTBzjskt_-mdN_3A-TnbzFycf4CTha41zoW9xOde_DOTpxpo-wmnWJ3u7vXqvHbP30UFc368xTJVNWqsIq1TLZSKa0ZWXBNHdOKkW54ay1rIAGGqFsSxqhS9FqK4xQRE45BYIv0eVvrweAzW70WzPuN_Nk_AdsOFzL</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Kline, T.L.</creator><creator>Ritman, E.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Paths of least flow-resistance: Characterization for the optimization of synthetic tissue scaffold design</title><author>Kline, T.L. ; Ritman, E.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-876c77d25b5279c286293ff57713a32dc26ebeb47cd0b4984d9c4a47052937e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Biological materials</topic><topic>Biomedical imaging</topic><topic>Design optimization</topic><topic>Fast Marching</topic><topic>Geometry</topic><topic>Hagen-Poiseuille</topic><topic>Image analysis</topic><topic>Mathematical model</topic><topic>Porous Materials</topic><topic>Sea Sponge</topic><topic>Skeletonization</topic><topic>Solid modeling</topic><topic>Tissue engineering</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Kline, T.L.</creatorcontrib><creatorcontrib>Ritman, E.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kline, T.L.</au><au>Ritman, E.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Paths of least flow-resistance: Characterization for the optimization of synthetic tissue scaffold design</atitle><btitle>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2009-06</date><risdate>2009</risdate><spage>606</spage><epage>609</epage><pages>606-609</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424439310</isbn><isbn>9781424439317</isbn><eisbn>1424439329</eisbn><eisbn>9781424439324</eisbn><abstract>A method for the analysis of preferred fluid movement into and out of porous specimen's pore networks has been developed that characterizes the flow pathways inside a pore network, an important property for the design of future synthetic tissue scaffolds. Current tissue scaffolds rely on diffusion as the solute transport mechanism for the sustenance and growth of cells into the scaffold's pore network. Utilizing convective transport induced by periodic scaffold deformation or subjecting the scaffold to a fluid pressure gradient are proposed methods for delivery/removal of nutrients/metabolic waste products. These future designs require an understanding of the flow properties of the designed scaffold. The developed method for characterizing the paths of least flow-resistance is applied to a computer model porous scaffold, a synthetic porous tissue scaffold, and a sea sponge.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2009.5193120</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7928 |
ispartof | 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.606-609 |
issn | 1945-7928 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_5193120 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Biological materials Biomedical imaging Design optimization Fast Marching Geometry Hagen-Poiseuille Image analysis Mathematical model Porous Materials Sea Sponge Skeletonization Solid modeling Tissue engineering Visualization |
title | Paths of least flow-resistance: Characterization for the optimization of synthetic tissue scaffold design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Paths%20of%20least%20flow-resistance:%20Characterization%20for%20the%20optimization%20of%20synthetic%20tissue%20scaffold%20design&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Kline,%20T.L.&rft.date=2009-06&rft.spage=606&rft.epage=609&rft.pages=606-609&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424439310&rft.isbn_list=9781424439317&rft_id=info:doi/10.1109/ISBI.2009.5193120&rft_dat=%3Cieee_6IE%3E5193120%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424439329&rft.eisbn_list=9781424439324&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5193120&rfr_iscdi=true |