Paths of least flow-resistance: Characterization for the optimization of synthetic tissue scaffold design

A method for the analysis of preferred fluid movement into and out of porous specimen's pore networks has been developed that characterizes the flow pathways inside a pore network, an important property for the design of future synthetic tissue scaffolds. Current tissue scaffolds rely on diffus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kline, T.L., Ritman, E.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 609
container_issue
container_start_page 606
container_title
container_volume
creator Kline, T.L.
Ritman, E.L.
description A method for the analysis of preferred fluid movement into and out of porous specimen's pore networks has been developed that characterizes the flow pathways inside a pore network, an important property for the design of future synthetic tissue scaffolds. Current tissue scaffolds rely on diffusion as the solute transport mechanism for the sustenance and growth of cells into the scaffold's pore network. Utilizing convective transport induced by periodic scaffold deformation or subjecting the scaffold to a fluid pressure gradient are proposed methods for delivery/removal of nutrients/metabolic waste products. These future designs require an understanding of the flow properties of the designed scaffold. The developed method for characterizing the paths of least flow-resistance is applied to a computer model porous scaffold, a synthetic porous tissue scaffold, and a sea sponge.
doi_str_mv 10.1109/ISBI.2009.5193120
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5193120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5193120</ieee_id><sourcerecordid>5193120</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-876c77d25b5279c286293ff57713a32dc26ebeb47cd0b4984d9c4a47052937e43</originalsourceid><addsrcrecordid>eNpFkEtLxDAUheMLHMf5AeImf6A1z6Zxp8VHYUBBXQ9pemMjnWZoIjL-egtWvJsD5zv3LA5CF5TklBJ9Vb_c1jkjROeSak4ZOUBnVDAhuOZMH6IF1UJmpZDs6B9QcjwDpVl5ilYxfpDp1ESJWCD_bFIXcXC4BxMTdn34ykaIPiYzWLjGVWdGYxOM_tskHwbswohTBzjskt_-mdN_3A-TnbzFycf4CTha41zoW9xOde_DOTpxpo-wmnWJ3u7vXqvHbP30UFc368xTJVNWqsIq1TLZSKa0ZWXBNHdOKkW54ay1rIAGGqFsSxqhS9FqK4xQRE45BYIv0eVvrweAzW70WzPuN_Nk_AdsOFzL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Paths of least flow-resistance: Characterization for the optimization of synthetic tissue scaffold design</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kline, T.L. ; Ritman, E.L.</creator><creatorcontrib>Kline, T.L. ; Ritman, E.L.</creatorcontrib><description>A method for the analysis of preferred fluid movement into and out of porous specimen's pore networks has been developed that characterizes the flow pathways inside a pore network, an important property for the design of future synthetic tissue scaffolds. Current tissue scaffolds rely on diffusion as the solute transport mechanism for the sustenance and growth of cells into the scaffold's pore network. Utilizing convective transport induced by periodic scaffold deformation or subjecting the scaffold to a fluid pressure gradient are proposed methods for delivery/removal of nutrients/metabolic waste products. These future designs require an understanding of the flow properties of the designed scaffold. The developed method for characterizing the paths of least flow-resistance is applied to a computer model porous scaffold, a synthetic porous tissue scaffold, and a sea sponge.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424439310</identifier><identifier>ISBN: 9781424439317</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1424439329</identifier><identifier>EISBN: 9781424439324</identifier><identifier>DOI: 10.1109/ISBI.2009.5193120</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biological materials ; Biomedical imaging ; Design optimization ; Fast Marching ; Geometry ; Hagen-Poiseuille ; Image analysis ; Mathematical model ; Porous Materials ; Sea Sponge ; Skeletonization ; Solid modeling ; Tissue engineering ; Visualization</subject><ispartof>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.606-609</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5193120$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5193120$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kline, T.L.</creatorcontrib><creatorcontrib>Ritman, E.L.</creatorcontrib><title>Paths of least flow-resistance: Characterization for the optimization of synthetic tissue scaffold design</title><title>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>A method for the analysis of preferred fluid movement into and out of porous specimen's pore networks has been developed that characterizes the flow pathways inside a pore network, an important property for the design of future synthetic tissue scaffolds. Current tissue scaffolds rely on diffusion as the solute transport mechanism for the sustenance and growth of cells into the scaffold's pore network. Utilizing convective transport induced by periodic scaffold deformation or subjecting the scaffold to a fluid pressure gradient are proposed methods for delivery/removal of nutrients/metabolic waste products. These future designs require an understanding of the flow properties of the designed scaffold. The developed method for characterizing the paths of least flow-resistance is applied to a computer model porous scaffold, a synthetic porous tissue scaffold, and a sea sponge.</description><subject>Algorithm design and analysis</subject><subject>Biological materials</subject><subject>Biomedical imaging</subject><subject>Design optimization</subject><subject>Fast Marching</subject><subject>Geometry</subject><subject>Hagen-Poiseuille</subject><subject>Image analysis</subject><subject>Mathematical model</subject><subject>Porous Materials</subject><subject>Sea Sponge</subject><subject>Skeletonization</subject><subject>Solid modeling</subject><subject>Tissue engineering</subject><subject>Visualization</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424439310</isbn><isbn>9781424439317</isbn><isbn>1424439329</isbn><isbn>9781424439324</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLxDAUheMLHMf5AeImf6A1z6Zxp8VHYUBBXQ9pemMjnWZoIjL-egtWvJsD5zv3LA5CF5TklBJ9Vb_c1jkjROeSak4ZOUBnVDAhuOZMH6IF1UJmpZDs6B9QcjwDpVl5ilYxfpDp1ESJWCD_bFIXcXC4BxMTdn34ykaIPiYzWLjGVWdGYxOM_tskHwbswohTBzjskt_-mdN_3A-TnbzFycf4CTha41zoW9xOde_DOTpxpo-wmnWJ3u7vXqvHbP30UFc368xTJVNWqsIq1TLZSKa0ZWXBNHdOKkW54ay1rIAGGqFsSxqhS9FqK4xQRE45BYIv0eVvrweAzW70WzPuN_Nk_AdsOFzL</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Kline, T.L.</creator><creator>Ritman, E.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Paths of least flow-resistance: Characterization for the optimization of synthetic tissue scaffold design</title><author>Kline, T.L. ; Ritman, E.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-876c77d25b5279c286293ff57713a32dc26ebeb47cd0b4984d9c4a47052937e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Biological materials</topic><topic>Biomedical imaging</topic><topic>Design optimization</topic><topic>Fast Marching</topic><topic>Geometry</topic><topic>Hagen-Poiseuille</topic><topic>Image analysis</topic><topic>Mathematical model</topic><topic>Porous Materials</topic><topic>Sea Sponge</topic><topic>Skeletonization</topic><topic>Solid modeling</topic><topic>Tissue engineering</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Kline, T.L.</creatorcontrib><creatorcontrib>Ritman, E.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kline, T.L.</au><au>Ritman, E.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Paths of least flow-resistance: Characterization for the optimization of synthetic tissue scaffold design</atitle><btitle>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2009-06</date><risdate>2009</risdate><spage>606</spage><epage>609</epage><pages>606-609</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424439310</isbn><isbn>9781424439317</isbn><eisbn>1424439329</eisbn><eisbn>9781424439324</eisbn><abstract>A method for the analysis of preferred fluid movement into and out of porous specimen's pore networks has been developed that characterizes the flow pathways inside a pore network, an important property for the design of future synthetic tissue scaffolds. Current tissue scaffolds rely on diffusion as the solute transport mechanism for the sustenance and growth of cells into the scaffold's pore network. Utilizing convective transport induced by periodic scaffold deformation or subjecting the scaffold to a fluid pressure gradient are proposed methods for delivery/removal of nutrients/metabolic waste products. These future designs require an understanding of the flow properties of the designed scaffold. The developed method for characterizing the paths of least flow-resistance is applied to a computer model porous scaffold, a synthetic porous tissue scaffold, and a sea sponge.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2009.5193120</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7928
ispartof 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.606-609
issn 1945-7928
1945-8452
language eng
recordid cdi_ieee_primary_5193120
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Biological materials
Biomedical imaging
Design optimization
Fast Marching
Geometry
Hagen-Poiseuille
Image analysis
Mathematical model
Porous Materials
Sea Sponge
Skeletonization
Solid modeling
Tissue engineering
Visualization
title Paths of least flow-resistance: Characterization for the optimization of synthetic tissue scaffold design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Paths%20of%20least%20flow-resistance:%20Characterization%20for%20the%20optimization%20of%20synthetic%20tissue%20scaffold%20design&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Kline,%20T.L.&rft.date=2009-06&rft.spage=606&rft.epage=609&rft.pages=606-609&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424439310&rft.isbn_list=9781424439317&rft_id=info:doi/10.1109/ISBI.2009.5193120&rft_dat=%3Cieee_6IE%3E5193120%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424439329&rft.eisbn_list=9781424439324&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5193120&rfr_iscdi=true