Desiccation diagnosis in lumbar discs from clinical MRI with a probabilistic model
Lumbar intervertebral disc diseases are among the main causes of lower back pain (LBP). Desiccation is a common disease resulting from various reasons and ultimately most people are affected by desiccation at some age. We propose a probabilistic model that incorporates intervertebral disc appearance...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 549 |
---|---|
container_issue | |
container_start_page | 546 |
container_title | |
container_volume | |
creator | Alomari, R.S. Corso, J.J. Chaudhary, V. Dhillon, G. |
description | Lumbar intervertebral disc diseases are among the main causes of lower back pain (LBP). Desiccation is a common disease resulting from various reasons and ultimately most people are affected by desiccation at some age. We propose a probabilistic model that incorporates intervertebral disc appearance and contextual information for automating the diagnosis of lumbar disc desiccation. We utilize a Gibbs distribution for processing localized lumbar intervertebral discs' appearance and contextual information. We use 55 clinical T2-weighted MRI for lumbar area and achieve over 96% accuracy on a cross validation experiment. |
doi_str_mv | 10.1109/ISBI.2009.5193105 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5193105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5193105</ieee_id><sourcerecordid>5193105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-f04f99a2c584a73989ed92f05b9f1b7c065fcaee756bf2f343b334d8139297643</originalsourceid><addsrcrecordid>eNpFkMtKxDAYheMNHMd5AHGTF2jNte2_1PFWGBFGXQ9JmugvaTs0FfHtLVjwbD44H5zFIeSCs5xzBlf1y02dC8Yg1xwkZ_qAnHEllJIgBRySBQels0ppcfQvODueRQmiOiWrlD7ZlHKyTC3I9tYndM6M2He0QfPe9QkTxY7Gr9aaYeqSSzQMfUtdxA6difRpW9NvHD-oofuht8ZixDSio23f-HhOToKJya9mLsnb_d3r-jHbPD_U6-tNhoJXYxaYCgBGOF0pU0qowDcgAtMWArelY4UOznhf6sIGEaSSVkrVVFyCgLJQckku_3bRe7_bD9ia4Wc3fyN_AbV5U4Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Desiccation diagnosis in lumbar discs from clinical MRI with a probabilistic model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alomari, R.S. ; Corso, J.J. ; Chaudhary, V. ; Dhillon, G.</creator><creatorcontrib>Alomari, R.S. ; Corso, J.J. ; Chaudhary, V. ; Dhillon, G.</creatorcontrib><description>Lumbar intervertebral disc diseases are among the main causes of lower back pain (LBP). Desiccation is a common disease resulting from various reasons and ultimately most people are affected by desiccation at some age. We propose a probabilistic model that incorporates intervertebral disc appearance and contextual information for automating the diagnosis of lumbar disc desiccation. We utilize a Gibbs distribution for processing localized lumbar intervertebral discs' appearance and contextual information. We use 55 clinical T2-weighted MRI for lumbar area and achieve over 96% accuracy on a cross validation experiment.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424439310</identifier><identifier>ISBN: 9781424439317</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1424439329</identifier><identifier>EISBN: 9781424439324</identifier><identifier>DOI: 10.1109/ISBI.2009.5193105</identifier><language>eng</language><publisher>IEEE</publisher><subject>Back ; Computer Aided Diagnosis ; Computer science ; Context modeling ; Degenerative diseases ; Desiccation Diagnosis ; Lumbar discs ; Magnetic field measurement ; Magnetic resonance imaging ; MRI ; Neural networks ; Pain ; Spine ; Testing</subject><ispartof>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.546-549</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5193105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5193105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alomari, R.S.</creatorcontrib><creatorcontrib>Corso, J.J.</creatorcontrib><creatorcontrib>Chaudhary, V.</creatorcontrib><creatorcontrib>Dhillon, G.</creatorcontrib><title>Desiccation diagnosis in lumbar discs from clinical MRI with a probabilistic model</title><title>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>Lumbar intervertebral disc diseases are among the main causes of lower back pain (LBP). Desiccation is a common disease resulting from various reasons and ultimately most people are affected by desiccation at some age. We propose a probabilistic model that incorporates intervertebral disc appearance and contextual information for automating the diagnosis of lumbar disc desiccation. We utilize a Gibbs distribution for processing localized lumbar intervertebral discs' appearance and contextual information. We use 55 clinical T2-weighted MRI for lumbar area and achieve over 96% accuracy on a cross validation experiment.</description><subject>Back</subject><subject>Computer Aided Diagnosis</subject><subject>Computer science</subject><subject>Context modeling</subject><subject>Degenerative diseases</subject><subject>Desiccation Diagnosis</subject><subject>Lumbar discs</subject><subject>Magnetic field measurement</subject><subject>Magnetic resonance imaging</subject><subject>MRI</subject><subject>Neural networks</subject><subject>Pain</subject><subject>Spine</subject><subject>Testing</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424439310</isbn><isbn>9781424439317</isbn><isbn>1424439329</isbn><isbn>9781424439324</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtKxDAYheMNHMd5AHGTF2jNte2_1PFWGBFGXQ9JmugvaTs0FfHtLVjwbD44H5zFIeSCs5xzBlf1y02dC8Yg1xwkZ_qAnHEllJIgBRySBQels0ppcfQvODueRQmiOiWrlD7ZlHKyTC3I9tYndM6M2He0QfPe9QkTxY7Gr9aaYeqSSzQMfUtdxA6difRpW9NvHD-oofuht8ZixDSio23f-HhOToKJya9mLsnb_d3r-jHbPD_U6-tNhoJXYxaYCgBGOF0pU0qowDcgAtMWArelY4UOznhf6sIGEaSSVkrVVFyCgLJQckku_3bRe7_bD9ia4Wc3fyN_AbV5U4Q</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Alomari, R.S.</creator><creator>Corso, J.J.</creator><creator>Chaudhary, V.</creator><creator>Dhillon, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20090101</creationdate><title>Desiccation diagnosis in lumbar discs from clinical MRI with a probabilistic model</title><author>Alomari, R.S. ; Corso, J.J. ; Chaudhary, V. ; Dhillon, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-f04f99a2c584a73989ed92f05b9f1b7c065fcaee756bf2f343b334d8139297643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Back</topic><topic>Computer Aided Diagnosis</topic><topic>Computer science</topic><topic>Context modeling</topic><topic>Degenerative diseases</topic><topic>Desiccation Diagnosis</topic><topic>Lumbar discs</topic><topic>Magnetic field measurement</topic><topic>Magnetic resonance imaging</topic><topic>MRI</topic><topic>Neural networks</topic><topic>Pain</topic><topic>Spine</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Alomari, R.S.</creatorcontrib><creatorcontrib>Corso, J.J.</creatorcontrib><creatorcontrib>Chaudhary, V.</creatorcontrib><creatorcontrib>Dhillon, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alomari, R.S.</au><au>Corso, J.J.</au><au>Chaudhary, V.</au><au>Dhillon, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Desiccation diagnosis in lumbar discs from clinical MRI with a probabilistic model</atitle><btitle>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2009-01-01</date><risdate>2009</risdate><spage>546</spage><epage>549</epage><pages>546-549</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424439310</isbn><isbn>9781424439317</isbn><eisbn>1424439329</eisbn><eisbn>9781424439324</eisbn><abstract>Lumbar intervertebral disc diseases are among the main causes of lower back pain (LBP). Desiccation is a common disease resulting from various reasons and ultimately most people are affected by desiccation at some age. We propose a probabilistic model that incorporates intervertebral disc appearance and contextual information for automating the diagnosis of lumbar disc desiccation. We utilize a Gibbs distribution for processing localized lumbar intervertebral discs' appearance and contextual information. We use 55 clinical T2-weighted MRI for lumbar area and achieve over 96% accuracy on a cross validation experiment.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2009.5193105</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7928 |
ispartof | 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.546-549 |
issn | 1945-7928 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_5193105 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Back Computer Aided Diagnosis Computer science Context modeling Degenerative diseases Desiccation Diagnosis Lumbar discs Magnetic field measurement Magnetic resonance imaging MRI Neural networks Pain Spine Testing |
title | Desiccation diagnosis in lumbar discs from clinical MRI with a probabilistic model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Desiccation%20diagnosis%20in%20lumbar%20discs%20from%20clinical%20MRI%20with%20a%20probabilistic%20model&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Alomari,%20R.S.&rft.date=2009-01-01&rft.spage=546&rft.epage=549&rft.pages=546-549&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424439310&rft.isbn_list=9781424439317&rft_id=info:doi/10.1109/ISBI.2009.5193105&rft_dat=%3Cieee_6IE%3E5193105%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424439329&rft.eisbn_list=9781424439324&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5193105&rfr_iscdi=true |