Atlas-based deformable mutual population segmentation
Segmentation is one of the most critical problems in medical imaging. State-of-the art methods often are based on prior knowledge that can either encode geometry, appearance or both. Despite enormous work in the field, the mainstream is based on the concept of case-to-case segmentation. In this pape...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 5 |
container_title | |
container_volume | |
creator | Sotiras, A. Komodakis, N. Langs, G. Paragios, N. |
description | Segmentation is one of the most critical problems in medical imaging. State-of-the art methods often are based on prior knowledge that can either encode geometry, appearance or both. Despite enormous work in the field, the mainstream is based on the concept of case-to-case segmentation. In this paper, we introduce the notion of mutual population segmentation using discrete optimization where results from a given example influence results for the rest of the examples towards improving the overall segmentation performance. The aim is to combine prior knowledge along with consistency through the simultaneous segmentation of the whole population. This is achieved through their mutual deformation towards the atlas, while being constrained through a simultaneous all-to-all deformable diffeomorphic registration. Promising results demonstrate the potentials of the method. |
doi_str_mv | 10.1109/ISBI.2009.5192969 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5192969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5192969</ieee_id><sourcerecordid>5192969</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8002686713493e97f5e5662efbcfabd89e15b96d0ddcb46419dc5563099176c33</originalsourceid><addsrcrecordid>eNpFj81Kw0AUhcc_sNY-gLjJCySdO7-5y1qqBgpdqOsyk7mRSNKETLLw7S0a8Gw-Dh8cOIw9AM8AOK6Lt6ciE5xjpgEFGrxgd6CEUhKlwEu2AFQ6zZUWV_8C-PUsLIr8lq1i_OLn2LPlasH0ZmxcTL2LFJJAVTe0zjeUtNM4uSbpu35q3Fh3pyTSZ0un8bfcs5vKNZFWM5fs43n3vn1N94eXYrvZpzVYPaY558LkxoJUKAltpUkbI6jyZeV8yJFAezSBh1B6ZRRgKLU2kiOCNaWUS_b4t1sT0bEf6tYN38f5vvwBtLhJlA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Atlas-based deformable mutual population segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sotiras, A. ; Komodakis, N. ; Langs, G. ; Paragios, N.</creator><creatorcontrib>Sotiras, A. ; Komodakis, N. ; Langs, G. ; Paragios, N.</creatorcontrib><description>Segmentation is one of the most critical problems in medical imaging. State-of-the art methods often are based on prior knowledge that can either encode geometry, appearance or both. Despite enormous work in the field, the mainstream is based on the concept of case-to-case segmentation. In this paper, we introduce the notion of mutual population segmentation using discrete optimization where results from a given example influence results for the rest of the examples towards improving the overall segmentation performance. The aim is to combine prior knowledge along with consistency through the simultaneous segmentation of the whole population. This is achieved through their mutual deformation towards the atlas, while being constrained through a simultaneous all-to-all deformable diffeomorphic registration. Promising results demonstrate the potentials of the method.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424439310</identifier><identifier>ISBN: 9781424439317</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1424439329</identifier><identifier>EISBN: 9781424439324</identifier><identifier>DOI: 10.1109/ISBI.2009.5192969</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active shape model ; Atlas based segmentation ; Biomedical imaging ; Chest radiographs ; Computer science ; Geometry ; Image segmentation ; Lung field segmentation ; Lungs ; Markov random fields ; Radiography ; Radiology</subject><ispartof>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.5-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5192969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5192969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sotiras, A.</creatorcontrib><creatorcontrib>Komodakis, N.</creatorcontrib><creatorcontrib>Langs, G.</creatorcontrib><creatorcontrib>Paragios, N.</creatorcontrib><title>Atlas-based deformable mutual population segmentation</title><title>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>Segmentation is one of the most critical problems in medical imaging. State-of-the art methods often are based on prior knowledge that can either encode geometry, appearance or both. Despite enormous work in the field, the mainstream is based on the concept of case-to-case segmentation. In this paper, we introduce the notion of mutual population segmentation using discrete optimization where results from a given example influence results for the rest of the examples towards improving the overall segmentation performance. The aim is to combine prior knowledge along with consistency through the simultaneous segmentation of the whole population. This is achieved through their mutual deformation towards the atlas, while being constrained through a simultaneous all-to-all deformable diffeomorphic registration. Promising results demonstrate the potentials of the method.</description><subject>Active shape model</subject><subject>Atlas based segmentation</subject><subject>Biomedical imaging</subject><subject>Chest radiographs</subject><subject>Computer science</subject><subject>Geometry</subject><subject>Image segmentation</subject><subject>Lung field segmentation</subject><subject>Lungs</subject><subject>Markov random fields</subject><subject>Radiography</subject><subject>Radiology</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424439310</isbn><isbn>9781424439317</isbn><isbn>1424439329</isbn><isbn>9781424439324</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81Kw0AUhcc_sNY-gLjJCySdO7-5y1qqBgpdqOsyk7mRSNKETLLw7S0a8Gw-Dh8cOIw9AM8AOK6Lt6ciE5xjpgEFGrxgd6CEUhKlwEu2AFQ6zZUWV_8C-PUsLIr8lq1i_OLn2LPlasH0ZmxcTL2LFJJAVTe0zjeUtNM4uSbpu35q3Fh3pyTSZ0un8bfcs5vKNZFWM5fs43n3vn1N94eXYrvZpzVYPaY558LkxoJUKAltpUkbI6jyZeV8yJFAezSBh1B6ZRRgKLU2kiOCNaWUS_b4t1sT0bEf6tYN38f5vvwBtLhJlA</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Sotiras, A.</creator><creator>Komodakis, N.</creator><creator>Langs, G.</creator><creator>Paragios, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Atlas-based deformable mutual population segmentation</title><author>Sotiras, A. ; Komodakis, N. ; Langs, G. ; Paragios, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8002686713493e97f5e5662efbcfabd89e15b96d0ddcb46419dc5563099176c33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active shape model</topic><topic>Atlas based segmentation</topic><topic>Biomedical imaging</topic><topic>Chest radiographs</topic><topic>Computer science</topic><topic>Geometry</topic><topic>Image segmentation</topic><topic>Lung field segmentation</topic><topic>Lungs</topic><topic>Markov random fields</topic><topic>Radiography</topic><topic>Radiology</topic><toplevel>online_resources</toplevel><creatorcontrib>Sotiras, A.</creatorcontrib><creatorcontrib>Komodakis, N.</creatorcontrib><creatorcontrib>Langs, G.</creatorcontrib><creatorcontrib>Paragios, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sotiras, A.</au><au>Komodakis, N.</au><au>Langs, G.</au><au>Paragios, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Atlas-based deformable mutual population segmentation</atitle><btitle>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2009-06</date><risdate>2009</risdate><spage>5</spage><epage>8</epage><pages>5-8</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424439310</isbn><isbn>9781424439317</isbn><eisbn>1424439329</eisbn><eisbn>9781424439324</eisbn><abstract>Segmentation is one of the most critical problems in medical imaging. State-of-the art methods often are based on prior knowledge that can either encode geometry, appearance or both. Despite enormous work in the field, the mainstream is based on the concept of case-to-case segmentation. In this paper, we introduce the notion of mutual population segmentation using discrete optimization where results from a given example influence results for the rest of the examples towards improving the overall segmentation performance. The aim is to combine prior knowledge along with consistency through the simultaneous segmentation of the whole population. This is achieved through their mutual deformation towards the atlas, while being constrained through a simultaneous all-to-all deformable diffeomorphic registration. Promising results demonstrate the potentials of the method.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2009.5192969</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1945-7928 |
ispartof | 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.5-8 |
issn | 1945-7928 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_5192969 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Active shape model Atlas based segmentation Biomedical imaging Chest radiographs Computer science Geometry Image segmentation Lung field segmentation Lungs Markov random fields Radiography Radiology |
title | Atlas-based deformable mutual population segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Atlas-based%20deformable%20mutual%20population%20segmentation&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Sotiras,%20A.&rft.date=2009-06&rft.spage=5&rft.epage=8&rft.pages=5-8&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424439310&rft.isbn_list=9781424439317&rft_id=info:doi/10.1109/ISBI.2009.5192969&rft_dat=%3Cieee_6IE%3E5192969%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424439329&rft.eisbn_list=9781424439324&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5192969&rfr_iscdi=true |