Atlas-based deformable mutual population segmentation

Segmentation is one of the most critical problems in medical imaging. State-of-the art methods often are based on prior knowledge that can either encode geometry, appearance or both. Despite enormous work in the field, the mainstream is based on the concept of case-to-case segmentation. In this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sotiras, A., Komodakis, N., Langs, G., Paragios, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 5
container_title
container_volume
creator Sotiras, A.
Komodakis, N.
Langs, G.
Paragios, N.
description Segmentation is one of the most critical problems in medical imaging. State-of-the art methods often are based on prior knowledge that can either encode geometry, appearance or both. Despite enormous work in the field, the mainstream is based on the concept of case-to-case segmentation. In this paper, we introduce the notion of mutual population segmentation using discrete optimization where results from a given example influence results for the rest of the examples towards improving the overall segmentation performance. The aim is to combine prior knowledge along with consistency through the simultaneous segmentation of the whole population. This is achieved through their mutual deformation towards the atlas, while being constrained through a simultaneous all-to-all deformable diffeomorphic registration. Promising results demonstrate the potentials of the method.
doi_str_mv 10.1109/ISBI.2009.5192969
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5192969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5192969</ieee_id><sourcerecordid>5192969</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8002686713493e97f5e5662efbcfabd89e15b96d0ddcb46419dc5563099176c33</originalsourceid><addsrcrecordid>eNpFj81Kw0AUhcc_sNY-gLjJCySdO7-5y1qqBgpdqOsyk7mRSNKETLLw7S0a8Gw-Dh8cOIw9AM8AOK6Lt6ciE5xjpgEFGrxgd6CEUhKlwEu2AFQ6zZUWV_8C-PUsLIr8lq1i_OLn2LPlasH0ZmxcTL2LFJJAVTe0zjeUtNM4uSbpu35q3Fh3pyTSZ0un8bfcs5vKNZFWM5fs43n3vn1N94eXYrvZpzVYPaY558LkxoJUKAltpUkbI6jyZeV8yJFAezSBh1B6ZRRgKLU2kiOCNaWUS_b4t1sT0bEf6tYN38f5vvwBtLhJlA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Atlas-based deformable mutual population segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sotiras, A. ; Komodakis, N. ; Langs, G. ; Paragios, N.</creator><creatorcontrib>Sotiras, A. ; Komodakis, N. ; Langs, G. ; Paragios, N.</creatorcontrib><description>Segmentation is one of the most critical problems in medical imaging. State-of-the art methods often are based on prior knowledge that can either encode geometry, appearance or both. Despite enormous work in the field, the mainstream is based on the concept of case-to-case segmentation. In this paper, we introduce the notion of mutual population segmentation using discrete optimization where results from a given example influence results for the rest of the examples towards improving the overall segmentation performance. The aim is to combine prior knowledge along with consistency through the simultaneous segmentation of the whole population. This is achieved through their mutual deformation towards the atlas, while being constrained through a simultaneous all-to-all deformable diffeomorphic registration. Promising results demonstrate the potentials of the method.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 1424439310</identifier><identifier>ISBN: 9781424439317</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 1424439329</identifier><identifier>EISBN: 9781424439324</identifier><identifier>DOI: 10.1109/ISBI.2009.5192969</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active shape model ; Atlas based segmentation ; Biomedical imaging ; Chest radiographs ; Computer science ; Geometry ; Image segmentation ; Lung field segmentation ; Lungs ; Markov random fields ; Radiography ; Radiology</subject><ispartof>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.5-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5192969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5192969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sotiras, A.</creatorcontrib><creatorcontrib>Komodakis, N.</creatorcontrib><creatorcontrib>Langs, G.</creatorcontrib><creatorcontrib>Paragios, N.</creatorcontrib><title>Atlas-based deformable mutual population segmentation</title><title>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</title><addtitle>ISBI</addtitle><description>Segmentation is one of the most critical problems in medical imaging. State-of-the art methods often are based on prior knowledge that can either encode geometry, appearance or both. Despite enormous work in the field, the mainstream is based on the concept of case-to-case segmentation. In this paper, we introduce the notion of mutual population segmentation using discrete optimization where results from a given example influence results for the rest of the examples towards improving the overall segmentation performance. The aim is to combine prior knowledge along with consistency through the simultaneous segmentation of the whole population. This is achieved through their mutual deformation towards the atlas, while being constrained through a simultaneous all-to-all deformable diffeomorphic registration. Promising results demonstrate the potentials of the method.</description><subject>Active shape model</subject><subject>Atlas based segmentation</subject><subject>Biomedical imaging</subject><subject>Chest radiographs</subject><subject>Computer science</subject><subject>Geometry</subject><subject>Image segmentation</subject><subject>Lung field segmentation</subject><subject>Lungs</subject><subject>Markov random fields</subject><subject>Radiography</subject><subject>Radiology</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>1424439310</isbn><isbn>9781424439317</isbn><isbn>1424439329</isbn><isbn>9781424439324</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81Kw0AUhcc_sNY-gLjJCySdO7-5y1qqBgpdqOsyk7mRSNKETLLw7S0a8Gw-Dh8cOIw9AM8AOK6Lt6ciE5xjpgEFGrxgd6CEUhKlwEu2AFQ6zZUWV_8C-PUsLIr8lq1i_OLn2LPlasH0ZmxcTL2LFJJAVTe0zjeUtNM4uSbpu35q3Fh3pyTSZ0un8bfcs5vKNZFWM5fs43n3vn1N94eXYrvZpzVYPaY558LkxoJUKAltpUkbI6jyZeV8yJFAezSBh1B6ZRRgKLU2kiOCNaWUS_b4t1sT0bEf6tYN38f5vvwBtLhJlA</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Sotiras, A.</creator><creator>Komodakis, N.</creator><creator>Langs, G.</creator><creator>Paragios, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Atlas-based deformable mutual population segmentation</title><author>Sotiras, A. ; Komodakis, N. ; Langs, G. ; Paragios, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8002686713493e97f5e5662efbcfabd89e15b96d0ddcb46419dc5563099176c33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active shape model</topic><topic>Atlas based segmentation</topic><topic>Biomedical imaging</topic><topic>Chest radiographs</topic><topic>Computer science</topic><topic>Geometry</topic><topic>Image segmentation</topic><topic>Lung field segmentation</topic><topic>Lungs</topic><topic>Markov random fields</topic><topic>Radiography</topic><topic>Radiology</topic><toplevel>online_resources</toplevel><creatorcontrib>Sotiras, A.</creatorcontrib><creatorcontrib>Komodakis, N.</creatorcontrib><creatorcontrib>Langs, G.</creatorcontrib><creatorcontrib>Paragios, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sotiras, A.</au><au>Komodakis, N.</au><au>Langs, G.</au><au>Paragios, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Atlas-based deformable mutual population segmentation</atitle><btitle>2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro</btitle><stitle>ISBI</stitle><date>2009-06</date><risdate>2009</risdate><spage>5</spage><epage>8</epage><pages>5-8</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>1424439310</isbn><isbn>9781424439317</isbn><eisbn>1424439329</eisbn><eisbn>9781424439324</eisbn><abstract>Segmentation is one of the most critical problems in medical imaging. State-of-the art methods often are based on prior knowledge that can either encode geometry, appearance or both. Despite enormous work in the field, the mainstream is based on the concept of case-to-case segmentation. In this paper, we introduce the notion of mutual population segmentation using discrete optimization where results from a given example influence results for the rest of the examples towards improving the overall segmentation performance. The aim is to combine prior knowledge along with consistency through the simultaneous segmentation of the whole population. This is achieved through their mutual deformation towards the atlas, while being constrained through a simultaneous all-to-all deformable diffeomorphic registration. Promising results demonstrate the potentials of the method.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2009.5192969</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7928
ispartof 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, p.5-8
issn 1945-7928
1945-8452
language eng
recordid cdi_ieee_primary_5192969
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active shape model
Atlas based segmentation
Biomedical imaging
Chest radiographs
Computer science
Geometry
Image segmentation
Lung field segmentation
Lungs
Markov random fields
Radiography
Radiology
title Atlas-based deformable mutual population segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Atlas-based%20deformable%20mutual%20population%20segmentation&rft.btitle=2009%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging:%20From%20Nano%20to%20Macro&rft.au=Sotiras,%20A.&rft.date=2009-06&rft.spage=5&rft.epage=8&rft.pages=5-8&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=1424439310&rft.isbn_list=9781424439317&rft_id=info:doi/10.1109/ISBI.2009.5192969&rft_dat=%3Cieee_6IE%3E5192969%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424439329&rft.eisbn_list=9781424439324&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5192969&rfr_iscdi=true