Nonparametric model learning adaptive control method of DC motor

Nonparametric model learning adaptive control method (NMLAC) presented in this paper is based on new concepts called pseudo-partial-derivatives (PPD) for a class of nonlinear systems. No structural information, no mathematical model, no training process and no external testing signals are needed. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cao Rongmin, Zhongsheng Hou, Bai Lianping
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1782
container_issue
container_start_page 1779
container_title
container_volume
creator Cao Rongmin
Zhongsheng Hou
Bai Lianping
description Nonparametric model learning adaptive control method (NMLAC) presented in this paper is based on new concepts called pseudo-partial-derivatives (PPD) for a class of nonlinear systems. No structural information, no mathematical model, no training process and no external testing signals are needed. The unmodelled dynamics do not exist. In this paper, nonparametric model learning adaptive control (NMLAC) approach of a class of SISO nonlinear discrete-time systems based on linearization of tight format is applied to DC motor rotate speed control. The design of controller is model-free, based directly on pseudo-partial-derivatives (PPD) derived on-line from the input and output information of the motor motion model using novel parameter estimation algorithms. Simulation experiment examples are provided for real nonlinear systems, which are known to be difficult to model, and control to demonstrate the correctness, effectiveness and advantages of the approaches proposed.
doi_str_mv 10.1109/CCDC.2009.5192352
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5192352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5192352</ieee_id><sourcerecordid>5192352</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d5a4a897a430e67d0db79c4e3139c4f79e1c36700c646988b841509c453ef1e03</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhcdHwVrzA8TN_IHUe-eRmbtTUl9QdKPrMk1uNJJmyiQI_nsDFsGzOYvv4yyOEJcIS0Sg67JclUsFQEuLpLRVRyIj59EoY5RTmo7FHMn4nIxxJ_-YUqd_TNNMnE8znqAALM5ENgyfMMVYbTXOxc1z7PchhR2Pqa3kLtbcyY5D6tv-XYY67Mf2i2UV-zHFTk7aR6xlbOSqnOQxpgsxa0I3cHbohXi7v3stH_P1y8NTebvOW3R2zGsbTPDkgtHAhauh3jqqDGvUUzWOGCtdOICqMAV5v_UGLUzIam6QQS_E1e9uy8ybfWp3IX1vDufoHyTFUAM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonparametric model learning adaptive control method of DC motor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cao Rongmin ; Zhongsheng Hou ; Bai Lianping</creator><creatorcontrib>Cao Rongmin ; Zhongsheng Hou ; Bai Lianping</creatorcontrib><description>Nonparametric model learning adaptive control method (NMLAC) presented in this paper is based on new concepts called pseudo-partial-derivatives (PPD) for a class of nonlinear systems. No structural information, no mathematical model, no training process and no external testing signals are needed. The unmodelled dynamics do not exist. In this paper, nonparametric model learning adaptive control (NMLAC) approach of a class of SISO nonlinear discrete-time systems based on linearization of tight format is applied to DC motor rotate speed control. The design of controller is model-free, based directly on pseudo-partial-derivatives (PPD) derived on-line from the input and output information of the motor motion model using novel parameter estimation algorithms. Simulation experiment examples are provided for real nonlinear systems, which are known to be difficult to model, and control to demonstrate the correctness, effectiveness and advantages of the approaches proposed.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781424427222</identifier><identifier>ISBN: 1424427223</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781424427239</identifier><identifier>EISBN: 1424427231</identifier><identifier>DOI: 10.1109/CCDC.2009.5192352</identifier><identifier>LCCN: 2008906016</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Algorithm design and analysis ; computer simulation ; DC motor ; DC motors ; Mathematical model ; Motion control ; NMLAC ; Nonlinear systems ; nonlinear systems and stability ; Parameter estimation ; Signal processing ; Testing ; Velocity control</subject><ispartof>2009 Chinese Control and Decision Conference, 2009, p.1779-1782</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5192352$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5192352$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao Rongmin</creatorcontrib><creatorcontrib>Zhongsheng Hou</creatorcontrib><creatorcontrib>Bai Lianping</creatorcontrib><title>Nonparametric model learning adaptive control method of DC motor</title><title>2009 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>Nonparametric model learning adaptive control method (NMLAC) presented in this paper is based on new concepts called pseudo-partial-derivatives (PPD) for a class of nonlinear systems. No structural information, no mathematical model, no training process and no external testing signals are needed. The unmodelled dynamics do not exist. In this paper, nonparametric model learning adaptive control (NMLAC) approach of a class of SISO nonlinear discrete-time systems based on linearization of tight format is applied to DC motor rotate speed control. The design of controller is model-free, based directly on pseudo-partial-derivatives (PPD) derived on-line from the input and output information of the motor motion model using novel parameter estimation algorithms. Simulation experiment examples are provided for real nonlinear systems, which are known to be difficult to model, and control to demonstrate the correctness, effectiveness and advantages of the approaches proposed.</description><subject>Adaptive control</subject><subject>Algorithm design and analysis</subject><subject>computer simulation</subject><subject>DC motor</subject><subject>DC motors</subject><subject>Mathematical model</subject><subject>Motion control</subject><subject>NMLAC</subject><subject>Nonlinear systems</subject><subject>nonlinear systems and stability</subject><subject>Parameter estimation</subject><subject>Signal processing</subject><subject>Testing</subject><subject>Velocity control</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781424427222</isbn><isbn>1424427223</isbn><isbn>9781424427239</isbn><isbn>1424427231</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLw0AUhcdHwVrzA8TN_IHUe-eRmbtTUl9QdKPrMk1uNJJmyiQI_nsDFsGzOYvv4yyOEJcIS0Sg67JclUsFQEuLpLRVRyIj59EoY5RTmo7FHMn4nIxxJ_-YUqd_TNNMnE8znqAALM5ENgyfMMVYbTXOxc1z7PchhR2Pqa3kLtbcyY5D6tv-XYY67Mf2i2UV-zHFTk7aR6xlbOSqnOQxpgsxa0I3cHbohXi7v3stH_P1y8NTebvOW3R2zGsbTPDkgtHAhauh3jqqDGvUUzWOGCtdOICqMAV5v_UGLUzIam6QQS_E1e9uy8ybfWp3IX1vDufoHyTFUAM</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Cao Rongmin</creator><creator>Zhongsheng Hou</creator><creator>Bai Lianping</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Nonparametric model learning adaptive control method of DC motor</title><author>Cao Rongmin ; Zhongsheng Hou ; Bai Lianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d5a4a897a430e67d0db79c4e3139c4f79e1c36700c646988b841509c453ef1e03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive control</topic><topic>Algorithm design and analysis</topic><topic>computer simulation</topic><topic>DC motor</topic><topic>DC motors</topic><topic>Mathematical model</topic><topic>Motion control</topic><topic>NMLAC</topic><topic>Nonlinear systems</topic><topic>nonlinear systems and stability</topic><topic>Parameter estimation</topic><topic>Signal processing</topic><topic>Testing</topic><topic>Velocity control</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao Rongmin</creatorcontrib><creatorcontrib>Zhongsheng Hou</creatorcontrib><creatorcontrib>Bai Lianping</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao Rongmin</au><au>Zhongsheng Hou</au><au>Bai Lianping</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonparametric model learning adaptive control method of DC motor</atitle><btitle>2009 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2009-06</date><risdate>2009</risdate><spage>1779</spage><epage>1782</epage><pages>1779-1782</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781424427222</isbn><isbn>1424427223</isbn><eisbn>9781424427239</eisbn><eisbn>1424427231</eisbn><abstract>Nonparametric model learning adaptive control method (NMLAC) presented in this paper is based on new concepts called pseudo-partial-derivatives (PPD) for a class of nonlinear systems. No structural information, no mathematical model, no training process and no external testing signals are needed. The unmodelled dynamics do not exist. In this paper, nonparametric model learning adaptive control (NMLAC) approach of a class of SISO nonlinear discrete-time systems based on linearization of tight format is applied to DC motor rotate speed control. The design of controller is model-free, based directly on pseudo-partial-derivatives (PPD) derived on-line from the input and output information of the motor motion model using novel parameter estimation algorithms. Simulation experiment examples are provided for real nonlinear systems, which are known to be difficult to model, and control to demonstrate the correctness, effectiveness and advantages of the approaches proposed.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2009.5192352</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2009 Chinese Control and Decision Conference, 2009, p.1779-1782
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_5192352
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Algorithm design and analysis
computer simulation
DC motor
DC motors
Mathematical model
Motion control
NMLAC
Nonlinear systems
nonlinear systems and stability
Parameter estimation
Signal processing
Testing
Velocity control
title Nonparametric model learning adaptive control method of DC motor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonparametric%20model%20learning%20adaptive%20control%20method%20of%20DC%20motor&rft.btitle=2009%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Cao%20Rongmin&rft.date=2009-06&rft.spage=1779&rft.epage=1782&rft.pages=1779-1782&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781424427222&rft.isbn_list=1424427223&rft_id=info:doi/10.1109/CCDC.2009.5192352&rft_dat=%3Cieee_6IE%3E5192352%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424427239&rft.eisbn_list=1424427231&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5192352&rfr_iscdi=true