A hybrid genetic algorithm for the vehicle routing problem with simultaneous pickup and delivery

The vehicle routing problem with simultaneous pickup and delivery is an important variation of VRP where customers require simultaneous pickup and delivery service. In this paper, we proposed a hybrid genetic algorithm to solve this problem. In the proposed algorithm, we proposed a pheromone-based c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fanggeng Zhao, Dong Mei, Jiangsheng Sun, Weimin Liu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3933
container_issue
container_start_page 3928
container_title
container_volume
creator Fanggeng Zhao
Dong Mei
Jiangsheng Sun
Weimin Liu
description The vehicle routing problem with simultaneous pickup and delivery is an important variation of VRP where customers require simultaneous pickup and delivery service. In this paper, we proposed a hybrid genetic algorithm to solve this problem. In the proposed algorithm, we proposed a pheromone-based crossover operator that utilizes both the local and global information to construct offspring. The local information used in crossover operator includes edge lengths and adjacency relations, while the global information is stored as pheromone trails. To improve the performance of genetic algorithm, a local search procedure is integrated into GA, and acts as the mutation operator. Our hybrid algorithm was tested on benchmark instances, and experimental results are conclusively in favor of our algorithm.
doi_str_mv 10.1109/CCDC.2009.5192035
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5192035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5192035</ieee_id><sourcerecordid>5192035</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1da624c8ed26f4f9478ee5c8d6c1aa0efe189d80c68c206693afd1fd9b2b3c653</originalsourceid><addsrcrecordid>eNpVkMlOwzAYhM1SiVL6AIiLXyDFe-xjFVapEhc4F8f-3RiyyUlAfXsqUSExlzl8o-8wCF1TsqKUmNuiuCtWjBCzktQwwuUJWppcU8GEYDnj5hTNqRE6M0LkZ_8YY-d_jJsZujxotCGKUHWBlsPwQQ4RkktO5-h9jat9maLHO2hhjA7betelOFYNDl3CYwX4C6roasCpm8bY7nCfurKGBn8fVniIzVSPtoVuGnAf3efUY9t67KGOX5D2V2gWbD3A8tgL9PZw_1o8ZZuXx-divckizeWYUW8VE06DZyqIYESuAaTTXjlqLYEAVBuviVPaMaKU4TZ4GrwpWcmdknyBbn69EQC2fYqNTfvt8Tz-A0UxXgA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybrid genetic algorithm for the vehicle routing problem with simultaneous pickup and delivery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fanggeng Zhao ; Dong Mei ; Jiangsheng Sun ; Weimin Liu</creator><creatorcontrib>Fanggeng Zhao ; Dong Mei ; Jiangsheng Sun ; Weimin Liu</creatorcontrib><description>The vehicle routing problem with simultaneous pickup and delivery is an important variation of VRP where customers require simultaneous pickup and delivery service. In this paper, we proposed a hybrid genetic algorithm to solve this problem. In the proposed algorithm, we proposed a pheromone-based crossover operator that utilizes both the local and global information to construct offspring. The local information used in crossover operator includes edge lengths and adjacency relations, while the global information is stored as pheromone trails. To improve the performance of genetic algorithm, a local search procedure is integrated into GA, and acts as the mutation operator. Our hybrid algorithm was tested on benchmark instances, and experimental results are conclusively in favor of our algorithm.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781424427222</identifier><identifier>ISBN: 1424427223</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781424427239</identifier><identifier>EISBN: 1424427231</identifier><identifier>DOI: 10.1109/CCDC.2009.5192035</identifier><identifier>LCCN: 2008906016</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Costs ; Genetic algorithm ; Genetic algorithms ; Genetic mutations ; Heuristic algorithms ; Mechanical engineering ; Partitioning algorithms ; Pheromone-based crossover ; Pickup and delivery ; Routing ; Transportation ; Vehicle routing ; Vehicles</subject><ispartof>2009 Chinese Control and Decision Conference, 2009, p.3928-3933</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5192035$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5192035$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fanggeng Zhao</creatorcontrib><creatorcontrib>Dong Mei</creatorcontrib><creatorcontrib>Jiangsheng Sun</creatorcontrib><creatorcontrib>Weimin Liu</creatorcontrib><title>A hybrid genetic algorithm for the vehicle routing problem with simultaneous pickup and delivery</title><title>2009 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>The vehicle routing problem with simultaneous pickup and delivery is an important variation of VRP where customers require simultaneous pickup and delivery service. In this paper, we proposed a hybrid genetic algorithm to solve this problem. In the proposed algorithm, we proposed a pheromone-based crossover operator that utilizes both the local and global information to construct offspring. The local information used in crossover operator includes edge lengths and adjacency relations, while the global information is stored as pheromone trails. To improve the performance of genetic algorithm, a local search procedure is integrated into GA, and acts as the mutation operator. Our hybrid algorithm was tested on benchmark instances, and experimental results are conclusively in favor of our algorithm.</description><subject>Benchmark testing</subject><subject>Costs</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Heuristic algorithms</subject><subject>Mechanical engineering</subject><subject>Partitioning algorithms</subject><subject>Pheromone-based crossover</subject><subject>Pickup and delivery</subject><subject>Routing</subject><subject>Transportation</subject><subject>Vehicle routing</subject><subject>Vehicles</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781424427222</isbn><isbn>1424427223</isbn><isbn>9781424427239</isbn><isbn>1424427231</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMlOwzAYhM1SiVL6AIiLXyDFe-xjFVapEhc4F8f-3RiyyUlAfXsqUSExlzl8o-8wCF1TsqKUmNuiuCtWjBCzktQwwuUJWppcU8GEYDnj5hTNqRE6M0LkZ_8YY-d_jJsZujxotCGKUHWBlsPwQQ4RkktO5-h9jat9maLHO2hhjA7betelOFYNDl3CYwX4C6roasCpm8bY7nCfurKGBn8fVniIzVSPtoVuGnAf3efUY9t67KGOX5D2V2gWbD3A8tgL9PZw_1o8ZZuXx-divckizeWYUW8VE06DZyqIYESuAaTTXjlqLYEAVBuviVPaMaKU4TZ4GrwpWcmdknyBbn69EQC2fYqNTfvt8Tz-A0UxXgA</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Fanggeng Zhao</creator><creator>Dong Mei</creator><creator>Jiangsheng Sun</creator><creator>Weimin Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>A hybrid genetic algorithm for the vehicle routing problem with simultaneous pickup and delivery</title><author>Fanggeng Zhao ; Dong Mei ; Jiangsheng Sun ; Weimin Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1da624c8ed26f4f9478ee5c8d6c1aa0efe189d80c68c206693afd1fd9b2b3c653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Benchmark testing</topic><topic>Costs</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Heuristic algorithms</topic><topic>Mechanical engineering</topic><topic>Partitioning algorithms</topic><topic>Pheromone-based crossover</topic><topic>Pickup and delivery</topic><topic>Routing</topic><topic>Transportation</topic><topic>Vehicle routing</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Fanggeng Zhao</creatorcontrib><creatorcontrib>Dong Mei</creatorcontrib><creatorcontrib>Jiangsheng Sun</creatorcontrib><creatorcontrib>Weimin Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fanggeng Zhao</au><au>Dong Mei</au><au>Jiangsheng Sun</au><au>Weimin Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid genetic algorithm for the vehicle routing problem with simultaneous pickup and delivery</atitle><btitle>2009 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2009-06</date><risdate>2009</risdate><spage>3928</spage><epage>3933</epage><pages>3928-3933</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781424427222</isbn><isbn>1424427223</isbn><eisbn>9781424427239</eisbn><eisbn>1424427231</eisbn><abstract>The vehicle routing problem with simultaneous pickup and delivery is an important variation of VRP where customers require simultaneous pickup and delivery service. In this paper, we proposed a hybrid genetic algorithm to solve this problem. In the proposed algorithm, we proposed a pheromone-based crossover operator that utilizes both the local and global information to construct offspring. The local information used in crossover operator includes edge lengths and adjacency relations, while the global information is stored as pheromone trails. To improve the performance of genetic algorithm, a local search procedure is integrated into GA, and acts as the mutation operator. Our hybrid algorithm was tested on benchmark instances, and experimental results are conclusively in favor of our algorithm.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2009.5192035</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2009 Chinese Control and Decision Conference, 2009, p.3928-3933
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_5192035
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Benchmark testing
Costs
Genetic algorithm
Genetic algorithms
Genetic mutations
Heuristic algorithms
Mechanical engineering
Partitioning algorithms
Pheromone-based crossover
Pickup and delivery
Routing
Transportation
Vehicle routing
Vehicles
title A hybrid genetic algorithm for the vehicle routing problem with simultaneous pickup and delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20genetic%20algorithm%20for%20the%20vehicle%20routing%20problem%20with%20simultaneous%20pickup%20and%20delivery&rft.btitle=2009%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Fanggeng%20Zhao&rft.date=2009-06&rft.spage=3928&rft.epage=3933&rft.pages=3928-3933&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781424427222&rft.isbn_list=1424427223&rft_id=info:doi/10.1109/CCDC.2009.5192035&rft_dat=%3Cieee_6IE%3E5192035%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424427239&rft.eisbn_list=1424427231&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5192035&rfr_iscdi=true