A hybrid genetic algorithm for the vehicle routing problem with simultaneous pickup and delivery
The vehicle routing problem with simultaneous pickup and delivery is an important variation of VRP where customers require simultaneous pickup and delivery service. In this paper, we proposed a hybrid genetic algorithm to solve this problem. In the proposed algorithm, we proposed a pheromone-based c...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3933 |
---|---|
container_issue | |
container_start_page | 3928 |
container_title | |
container_volume | |
creator | Fanggeng Zhao Dong Mei Jiangsheng Sun Weimin Liu |
description | The vehicle routing problem with simultaneous pickup and delivery is an important variation of VRP where customers require simultaneous pickup and delivery service. In this paper, we proposed a hybrid genetic algorithm to solve this problem. In the proposed algorithm, we proposed a pheromone-based crossover operator that utilizes both the local and global information to construct offspring. The local information used in crossover operator includes edge lengths and adjacency relations, while the global information is stored as pheromone trails. To improve the performance of genetic algorithm, a local search procedure is integrated into GA, and acts as the mutation operator. Our hybrid algorithm was tested on benchmark instances, and experimental results are conclusively in favor of our algorithm. |
doi_str_mv | 10.1109/CCDC.2009.5192035 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5192035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5192035</ieee_id><sourcerecordid>5192035</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1da624c8ed26f4f9478ee5c8d6c1aa0efe189d80c68c206693afd1fd9b2b3c653</originalsourceid><addsrcrecordid>eNpVkMlOwzAYhM1SiVL6AIiLXyDFe-xjFVapEhc4F8f-3RiyyUlAfXsqUSExlzl8o-8wCF1TsqKUmNuiuCtWjBCzktQwwuUJWppcU8GEYDnj5hTNqRE6M0LkZ_8YY-d_jJsZujxotCGKUHWBlsPwQQ4RkktO5-h9jat9maLHO2hhjA7betelOFYNDl3CYwX4C6roasCpm8bY7nCfurKGBn8fVniIzVSPtoVuGnAf3efUY9t67KGOX5D2V2gWbD3A8tgL9PZw_1o8ZZuXx-divckizeWYUW8VE06DZyqIYESuAaTTXjlqLYEAVBuviVPaMaKU4TZ4GrwpWcmdknyBbn69EQC2fYqNTfvt8Tz-A0UxXgA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybrid genetic algorithm for the vehicle routing problem with simultaneous pickup and delivery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fanggeng Zhao ; Dong Mei ; Jiangsheng Sun ; Weimin Liu</creator><creatorcontrib>Fanggeng Zhao ; Dong Mei ; Jiangsheng Sun ; Weimin Liu</creatorcontrib><description>The vehicle routing problem with simultaneous pickup and delivery is an important variation of VRP where customers require simultaneous pickup and delivery service. In this paper, we proposed a hybrid genetic algorithm to solve this problem. In the proposed algorithm, we proposed a pheromone-based crossover operator that utilizes both the local and global information to construct offspring. The local information used in crossover operator includes edge lengths and adjacency relations, while the global information is stored as pheromone trails. To improve the performance of genetic algorithm, a local search procedure is integrated into GA, and acts as the mutation operator. Our hybrid algorithm was tested on benchmark instances, and experimental results are conclusively in favor of our algorithm.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781424427222</identifier><identifier>ISBN: 1424427223</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781424427239</identifier><identifier>EISBN: 1424427231</identifier><identifier>DOI: 10.1109/CCDC.2009.5192035</identifier><identifier>LCCN: 2008906016</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Costs ; Genetic algorithm ; Genetic algorithms ; Genetic mutations ; Heuristic algorithms ; Mechanical engineering ; Partitioning algorithms ; Pheromone-based crossover ; Pickup and delivery ; Routing ; Transportation ; Vehicle routing ; Vehicles</subject><ispartof>2009 Chinese Control and Decision Conference, 2009, p.3928-3933</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5192035$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5192035$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fanggeng Zhao</creatorcontrib><creatorcontrib>Dong Mei</creatorcontrib><creatorcontrib>Jiangsheng Sun</creatorcontrib><creatorcontrib>Weimin Liu</creatorcontrib><title>A hybrid genetic algorithm for the vehicle routing problem with simultaneous pickup and delivery</title><title>2009 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>The vehicle routing problem with simultaneous pickup and delivery is an important variation of VRP where customers require simultaneous pickup and delivery service. In this paper, we proposed a hybrid genetic algorithm to solve this problem. In the proposed algorithm, we proposed a pheromone-based crossover operator that utilizes both the local and global information to construct offspring. The local information used in crossover operator includes edge lengths and adjacency relations, while the global information is stored as pheromone trails. To improve the performance of genetic algorithm, a local search procedure is integrated into GA, and acts as the mutation operator. Our hybrid algorithm was tested on benchmark instances, and experimental results are conclusively in favor of our algorithm.</description><subject>Benchmark testing</subject><subject>Costs</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Heuristic algorithms</subject><subject>Mechanical engineering</subject><subject>Partitioning algorithms</subject><subject>Pheromone-based crossover</subject><subject>Pickup and delivery</subject><subject>Routing</subject><subject>Transportation</subject><subject>Vehicle routing</subject><subject>Vehicles</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781424427222</isbn><isbn>1424427223</isbn><isbn>9781424427239</isbn><isbn>1424427231</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMlOwzAYhM1SiVL6AIiLXyDFe-xjFVapEhc4F8f-3RiyyUlAfXsqUSExlzl8o-8wCF1TsqKUmNuiuCtWjBCzktQwwuUJWppcU8GEYDnj5hTNqRE6M0LkZ_8YY-d_jJsZujxotCGKUHWBlsPwQQ4RkktO5-h9jat9maLHO2hhjA7betelOFYNDl3CYwX4C6roasCpm8bY7nCfurKGBn8fVniIzVSPtoVuGnAf3efUY9t67KGOX5D2V2gWbD3A8tgL9PZw_1o8ZZuXx-divckizeWYUW8VE06DZyqIYESuAaTTXjlqLYEAVBuviVPaMaKU4TZ4GrwpWcmdknyBbn69EQC2fYqNTfvt8Tz-A0UxXgA</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Fanggeng Zhao</creator><creator>Dong Mei</creator><creator>Jiangsheng Sun</creator><creator>Weimin Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>A hybrid genetic algorithm for the vehicle routing problem with simultaneous pickup and delivery</title><author>Fanggeng Zhao ; Dong Mei ; Jiangsheng Sun ; Weimin Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1da624c8ed26f4f9478ee5c8d6c1aa0efe189d80c68c206693afd1fd9b2b3c653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Benchmark testing</topic><topic>Costs</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Heuristic algorithms</topic><topic>Mechanical engineering</topic><topic>Partitioning algorithms</topic><topic>Pheromone-based crossover</topic><topic>Pickup and delivery</topic><topic>Routing</topic><topic>Transportation</topic><topic>Vehicle routing</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Fanggeng Zhao</creatorcontrib><creatorcontrib>Dong Mei</creatorcontrib><creatorcontrib>Jiangsheng Sun</creatorcontrib><creatorcontrib>Weimin Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fanggeng Zhao</au><au>Dong Mei</au><au>Jiangsheng Sun</au><au>Weimin Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid genetic algorithm for the vehicle routing problem with simultaneous pickup and delivery</atitle><btitle>2009 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2009-06</date><risdate>2009</risdate><spage>3928</spage><epage>3933</epage><pages>3928-3933</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781424427222</isbn><isbn>1424427223</isbn><eisbn>9781424427239</eisbn><eisbn>1424427231</eisbn><abstract>The vehicle routing problem with simultaneous pickup and delivery is an important variation of VRP where customers require simultaneous pickup and delivery service. In this paper, we proposed a hybrid genetic algorithm to solve this problem. In the proposed algorithm, we proposed a pheromone-based crossover operator that utilizes both the local and global information to construct offspring. The local information used in crossover operator includes edge lengths and adjacency relations, while the global information is stored as pheromone trails. To improve the performance of genetic algorithm, a local search procedure is integrated into GA, and acts as the mutation operator. Our hybrid algorithm was tested on benchmark instances, and experimental results are conclusively in favor of our algorithm.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2009.5192035</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-9439 |
ispartof | 2009 Chinese Control and Decision Conference, 2009, p.3928-3933 |
issn | 1948-9439 1948-9447 |
language | eng |
recordid | cdi_ieee_primary_5192035 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Benchmark testing Costs Genetic algorithm Genetic algorithms Genetic mutations Heuristic algorithms Mechanical engineering Partitioning algorithms Pheromone-based crossover Pickup and delivery Routing Transportation Vehicle routing Vehicles |
title | A hybrid genetic algorithm for the vehicle routing problem with simultaneous pickup and delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20genetic%20algorithm%20for%20the%20vehicle%20routing%20problem%20with%20simultaneous%20pickup%20and%20delivery&rft.btitle=2009%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Fanggeng%20Zhao&rft.date=2009-06&rft.spage=3928&rft.epage=3933&rft.pages=3928-3933&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781424427222&rft.isbn_list=1424427223&rft_id=info:doi/10.1109/CCDC.2009.5192035&rft_dat=%3Cieee_6IE%3E5192035%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424427239&rft.eisbn_list=1424427231&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5192035&rfr_iscdi=true |