Link Loss Rate Inference Using Success Rate Cumulant Generating Function

Inference of the internal link state is an important and challenging issue for operating and evaluating networks. This paper presents a method to infer internal link loss characteristics based on end-to-end measurement. Our method uses cumulant generating function (CGF) inference algorithm. The main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chengbo Huang, Yongsheng Liang, Yilong Xu, Guisheng Yi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue
container_start_page 157
container_title
container_volume
creator Chengbo Huang
Yongsheng Liang
Yilong Xu
Guisheng Yi
description Inference of the internal link state is an important and challenging issue for operating and evaluating networks. This paper presents a method to infer internal link loss characteristics based on end-to-end measurement. Our method uses cumulant generating function (CGF) inference algorithm. The main contribution of our approach is that we use the success rate CGF instead of the loss rate CGF, because the loss rate CGF cannot be constructed directly. We construct the path success rate CGF first, then the link success rate CGF can be inferred, and the link success rate can be obtained. Employing the relationship between the link loss rate and the link success rate, we can get the link loss rate. The simulation results demonstrate that this method is efficient.
doi_str_mv 10.1109/ICFN.2009.19
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5189919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5189919</ieee_id><sourcerecordid>5189919</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5ce10c17b4f99ea9e9dc41fc7c50e45536ae79580250ff91219275a460aa33e33</originalsourceid><addsrcrecordid>eNo1jMFOwzAQRC2hStDSGzcu-YEEr-2Ns0cUkbZSBBLQc2XMGhlaF8XJgb-nCJjLSG-eRogrkBWApJtN291XSkqqgM7EXNqaUGNtzUzMT7gho4ylc7HM-V2eYlDZBi7Euo_po-iPORePbuRikwIPnDwX2xzTW_E0ec__Yzsdpr1LY7HixIMbf4RuSn6Mx3QpZsHtMy__eiG23d1zuy77h9Wmve3LCBbHEj2D9GBfTCBiR0yv3kDw1qNkg6hrx5awkQplCAQKSFl0ppbOac1aL8T1729k5t3nEA9u-NohNERA-htKyErE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Link Loss Rate Inference Using Success Rate Cumulant Generating Function</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chengbo Huang ; Yongsheng Liang ; Yilong Xu ; Guisheng Yi</creator><creatorcontrib>Chengbo Huang ; Yongsheng Liang ; Yilong Xu ; Guisheng Yi</creatorcontrib><description>Inference of the internal link state is an important and challenging issue for operating and evaluating networks. This paper presents a method to infer internal link loss characteristics based on end-to-end measurement. Our method uses cumulant generating function (CGF) inference algorithm. The main contribution of our approach is that we use the success rate CGF instead of the loss rate CGF, because the loss rate CGF cannot be constructed directly. We construct the path success rate CGF first, then the link success rate CGF can be inferred, and the link success rate can be obtained. Employing the relationship between the link loss rate and the link success rate, we can get the link loss rate. The simulation results demonstrate that this method is efficient.</description><identifier>ISBN: 0769535674</identifier><identifier>ISBN: 9780769535678</identifier><identifier>DOI: 10.1109/ICFN.2009.19</identifier><identifier>LCCN: 2008942479</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communication networks ; cumulant generating function (CGF) ; Educational institutions ; Inference algorithms ; Information technology ; IP networks ; Loss measurement ; loss rate inference ; Maximum likelihood estimation ; network measurement ; Probes ; Routing ; Tomography</subject><ispartof>2009 International Conference on Future Networks, 2009, p.157-160</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5189919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5189919$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chengbo Huang</creatorcontrib><creatorcontrib>Yongsheng Liang</creatorcontrib><creatorcontrib>Yilong Xu</creatorcontrib><creatorcontrib>Guisheng Yi</creatorcontrib><title>Link Loss Rate Inference Using Success Rate Cumulant Generating Function</title><title>2009 International Conference on Future Networks</title><addtitle>ICFN</addtitle><description>Inference of the internal link state is an important and challenging issue for operating and evaluating networks. This paper presents a method to infer internal link loss characteristics based on end-to-end measurement. Our method uses cumulant generating function (CGF) inference algorithm. The main contribution of our approach is that we use the success rate CGF instead of the loss rate CGF, because the loss rate CGF cannot be constructed directly. We construct the path success rate CGF first, then the link success rate CGF can be inferred, and the link success rate can be obtained. Employing the relationship between the link loss rate and the link success rate, we can get the link loss rate. The simulation results demonstrate that this method is efficient.</description><subject>Communication networks</subject><subject>cumulant generating function (CGF)</subject><subject>Educational institutions</subject><subject>Inference algorithms</subject><subject>Information technology</subject><subject>IP networks</subject><subject>Loss measurement</subject><subject>loss rate inference</subject><subject>Maximum likelihood estimation</subject><subject>network measurement</subject><subject>Probes</subject><subject>Routing</subject><subject>Tomography</subject><isbn>0769535674</isbn><isbn>9780769535678</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jMFOwzAQRC2hStDSGzcu-YEEr-2Ns0cUkbZSBBLQc2XMGhlaF8XJgb-nCJjLSG-eRogrkBWApJtN291XSkqqgM7EXNqaUGNtzUzMT7gho4ylc7HM-V2eYlDZBi7Euo_po-iPORePbuRikwIPnDwX2xzTW_E0ec__Yzsdpr1LY7HixIMbf4RuSn6Mx3QpZsHtMy__eiG23d1zuy77h9Wmve3LCBbHEj2D9GBfTCBiR0yv3kDw1qNkg6hrx5awkQplCAQKSFl0ppbOac1aL8T1729k5t3nEA9u-NohNERA-htKyErE</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Chengbo Huang</creator><creator>Yongsheng Liang</creator><creator>Yilong Xu</creator><creator>Guisheng Yi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>Link Loss Rate Inference Using Success Rate Cumulant Generating Function</title><author>Chengbo Huang ; Yongsheng Liang ; Yilong Xu ; Guisheng Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5ce10c17b4f99ea9e9dc41fc7c50e45536ae79580250ff91219275a460aa33e33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Communication networks</topic><topic>cumulant generating function (CGF)</topic><topic>Educational institutions</topic><topic>Inference algorithms</topic><topic>Information technology</topic><topic>IP networks</topic><topic>Loss measurement</topic><topic>loss rate inference</topic><topic>Maximum likelihood estimation</topic><topic>network measurement</topic><topic>Probes</topic><topic>Routing</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Chengbo Huang</creatorcontrib><creatorcontrib>Yongsheng Liang</creatorcontrib><creatorcontrib>Yilong Xu</creatorcontrib><creatorcontrib>Guisheng Yi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chengbo Huang</au><au>Yongsheng Liang</au><au>Yilong Xu</au><au>Guisheng Yi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Link Loss Rate Inference Using Success Rate Cumulant Generating Function</atitle><btitle>2009 International Conference on Future Networks</btitle><stitle>ICFN</stitle><date>2009-03</date><risdate>2009</risdate><spage>157</spage><epage>160</epage><pages>157-160</pages><isbn>0769535674</isbn><isbn>9780769535678</isbn><abstract>Inference of the internal link state is an important and challenging issue for operating and evaluating networks. This paper presents a method to infer internal link loss characteristics based on end-to-end measurement. Our method uses cumulant generating function (CGF) inference algorithm. The main contribution of our approach is that we use the success rate CGF instead of the loss rate CGF, because the loss rate CGF cannot be constructed directly. We construct the path success rate CGF first, then the link success rate CGF can be inferred, and the link success rate can be obtained. Employing the relationship between the link loss rate and the link success rate, we can get the link loss rate. The simulation results demonstrate that this method is efficient.</abstract><pub>IEEE</pub><doi>10.1109/ICFN.2009.19</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769535674
ispartof 2009 International Conference on Future Networks, 2009, p.157-160
issn
language eng
recordid cdi_ieee_primary_5189919
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Communication networks
cumulant generating function (CGF)
Educational institutions
Inference algorithms
Information technology
IP networks
Loss measurement
loss rate inference
Maximum likelihood estimation
network measurement
Probes
Routing
Tomography
title Link Loss Rate Inference Using Success Rate Cumulant Generating Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Link%20Loss%20Rate%20Inference%20Using%20Success%20Rate%20Cumulant%20Generating%20Function&rft.btitle=2009%20International%20Conference%20on%20Future%20Networks&rft.au=Chengbo%20Huang&rft.date=2009-03&rft.spage=157&rft.epage=160&rft.pages=157-160&rft.isbn=0769535674&rft.isbn_list=9780769535678&rft_id=info:doi/10.1109/ICFN.2009.19&rft_dat=%3Cieee_6IE%3E5189919%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5189919&rfr_iscdi=true