Artificial neural networks activation function HDL coder
The sigmoid and hyperbolic tangent functions are usually used as the activation functions in Artificial Neural Networks (ANNs). The exponential nature of these functions make them difficult for hardware implementation. Hence, several different methods for approximating them in hardware are proposed....
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 392 |
---|---|
container_issue | |
container_start_page | 389 |
container_title | |
container_volume | |
creator | Namin, A.H. Leboeuf, K. Huapeng Wu Ahmadi, M. |
description | The sigmoid and hyperbolic tangent functions are usually used as the activation functions in Artificial Neural Networks (ANNs). The exponential nature of these functions make them difficult for hardware implementation. Hence, several different methods for approximating them in hardware are proposed. In this work, we present a MATLAB toolbox called the ldquoSigTan HDL Coderrdquo, that generates synthesizable HDL Code which approximates these functions in hardware according to the specific user requirements. The HDL code is platform independent and can be used for FPGA as well as ASIC implementations. Input parameters to the system are the approximation error, input range, and the approximation method. Three different user-selectable methods for approximating the functions are programmed in the toolbox. All implemented approximation methods avoid the use of multipliers for their implementation, as multipliers are expensive hardware components in terms of area and speed. |
doi_str_mv | 10.1109/EIT.2009.5189648 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5189648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5189648</ieee_id><sourcerecordid>5189648</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f67ca16b0954d408b503306701ffaee6b15380662c9b23ddd53651393345e8ee3</originalsourceid><addsrcrecordid>eNpVkF1LwzAYhePHwDl7L3jTP9D6Jm-SJpdjTjcoeNP7kaYJRGcraab47y3bELw6Bw4853AIuadQUgr6cb1tSgagS0GVllxdkExXinLGOaIQ9JLMGRW8AKzw6l_G-fVfJqoZuZ0wSoOugN6QbBzfAGBqkJqpOVHLmIIPNph93rtDPEr6HuL7mBubwpdJYehzf-jt0Wye6twOnYt3ZObNfnTZWRekeV43q01Rv75sV8u6CBpS4WVlDZUtaME7DqoVgAhymuK9cU62VKACKZnVLcOu6wRKQVEjcuGUc7ggDydscM7tPmP4MPFnd_4EfwGxC0yv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artificial neural networks activation function HDL coder</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Namin, A.H. ; Leboeuf, K. ; Huapeng Wu ; Ahmadi, M.</creator><creatorcontrib>Namin, A.H. ; Leboeuf, K. ; Huapeng Wu ; Ahmadi, M.</creatorcontrib><description>The sigmoid and hyperbolic tangent functions are usually used as the activation functions in Artificial Neural Networks (ANNs). The exponential nature of these functions make them difficult for hardware implementation. Hence, several different methods for approximating them in hardware are proposed. In this work, we present a MATLAB toolbox called the ldquoSigTan HDL Coderrdquo, that generates synthesizable HDL Code which approximates these functions in hardware according to the specific user requirements. The HDL code is platform independent and can be used for FPGA as well as ASIC implementations. Input parameters to the system are the approximation error, input range, and the approximation method. Three different user-selectable methods for approximating the functions are programmed in the toolbox. All implemented approximation methods avoid the use of multipliers for their implementation, as multipliers are expensive hardware components in terms of area and speed.</description><identifier>ISSN: 2154-0357</identifier><identifier>ISBN: 9781424433544</identifier><identifier>ISBN: 1424433541</identifier><identifier>EISSN: 2154-0373</identifier><identifier>EISBN: 9781424433551</identifier><identifier>EISBN: 142443355X</identifier><identifier>DOI: 10.1109/EIT.2009.5189648</identifier><identifier>LCCN: 2008909701</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Artificial neural networks ; Delay ; Electronic Design Automation ; Field programmable gate arrays ; Hardware design languages ; Hardware implementation ; Hyperbolic tangent function ; MATLAB ; Network synthesis ; Piecewise linear approximation ; Piecewise linear techniques ; Sigmoid function ; Table lookup ; Toolbox</subject><ispartof>2009 IEEE International Conference on Electro/Information Technology, 2009, p.389-392</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5189648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5189648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Namin, A.H.</creatorcontrib><creatorcontrib>Leboeuf, K.</creatorcontrib><creatorcontrib>Huapeng Wu</creatorcontrib><creatorcontrib>Ahmadi, M.</creatorcontrib><title>Artificial neural networks activation function HDL coder</title><title>2009 IEEE International Conference on Electro/Information Technology</title><addtitle>EIT</addtitle><description>The sigmoid and hyperbolic tangent functions are usually used as the activation functions in Artificial Neural Networks (ANNs). The exponential nature of these functions make them difficult for hardware implementation. Hence, several different methods for approximating them in hardware are proposed. In this work, we present a MATLAB toolbox called the ldquoSigTan HDL Coderrdquo, that generates synthesizable HDL Code which approximates these functions in hardware according to the specific user requirements. The HDL code is platform independent and can be used for FPGA as well as ASIC implementations. Input parameters to the system are the approximation error, input range, and the approximation method. Three different user-selectable methods for approximating the functions are programmed in the toolbox. All implemented approximation methods avoid the use of multipliers for their implementation, as multipliers are expensive hardware components in terms of area and speed.</description><subject>Approximation methods</subject><subject>Artificial neural networks</subject><subject>Delay</subject><subject>Electronic Design Automation</subject><subject>Field programmable gate arrays</subject><subject>Hardware design languages</subject><subject>Hardware implementation</subject><subject>Hyperbolic tangent function</subject><subject>MATLAB</subject><subject>Network synthesis</subject><subject>Piecewise linear approximation</subject><subject>Piecewise linear techniques</subject><subject>Sigmoid function</subject><subject>Table lookup</subject><subject>Toolbox</subject><issn>2154-0357</issn><issn>2154-0373</issn><isbn>9781424433544</isbn><isbn>1424433541</isbn><isbn>9781424433551</isbn><isbn>142443355X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkF1LwzAYhePHwDl7L3jTP9D6Jm-SJpdjTjcoeNP7kaYJRGcraab47y3bELw6Bw4853AIuadQUgr6cb1tSgagS0GVllxdkExXinLGOaIQ9JLMGRW8AKzw6l_G-fVfJqoZuZ0wSoOugN6QbBzfAGBqkJqpOVHLmIIPNph93rtDPEr6HuL7mBubwpdJYehzf-jt0Wye6twOnYt3ZObNfnTZWRekeV43q01Rv75sV8u6CBpS4WVlDZUtaME7DqoVgAhymuK9cU62VKACKZnVLcOu6wRKQVEjcuGUc7ggDydscM7tPmP4MPFnd_4EfwGxC0yv</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Namin, A.H.</creator><creator>Leboeuf, K.</creator><creator>Huapeng Wu</creator><creator>Ahmadi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Artificial neural networks activation function HDL coder</title><author>Namin, A.H. ; Leboeuf, K. ; Huapeng Wu ; Ahmadi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f67ca16b0954d408b503306701ffaee6b15380662c9b23ddd53651393345e8ee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation methods</topic><topic>Artificial neural networks</topic><topic>Delay</topic><topic>Electronic Design Automation</topic><topic>Field programmable gate arrays</topic><topic>Hardware design languages</topic><topic>Hardware implementation</topic><topic>Hyperbolic tangent function</topic><topic>MATLAB</topic><topic>Network synthesis</topic><topic>Piecewise linear approximation</topic><topic>Piecewise linear techniques</topic><topic>Sigmoid function</topic><topic>Table lookup</topic><topic>Toolbox</topic><toplevel>online_resources</toplevel><creatorcontrib>Namin, A.H.</creatorcontrib><creatorcontrib>Leboeuf, K.</creatorcontrib><creatorcontrib>Huapeng Wu</creatorcontrib><creatorcontrib>Ahmadi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Namin, A.H.</au><au>Leboeuf, K.</au><au>Huapeng Wu</au><au>Ahmadi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artificial neural networks activation function HDL coder</atitle><btitle>2009 IEEE International Conference on Electro/Information Technology</btitle><stitle>EIT</stitle><date>2009-06</date><risdate>2009</risdate><spage>389</spage><epage>392</epage><pages>389-392</pages><issn>2154-0357</issn><eissn>2154-0373</eissn><isbn>9781424433544</isbn><isbn>1424433541</isbn><eisbn>9781424433551</eisbn><eisbn>142443355X</eisbn><abstract>The sigmoid and hyperbolic tangent functions are usually used as the activation functions in Artificial Neural Networks (ANNs). The exponential nature of these functions make them difficult for hardware implementation. Hence, several different methods for approximating them in hardware are proposed. In this work, we present a MATLAB toolbox called the ldquoSigTan HDL Coderrdquo, that generates synthesizable HDL Code which approximates these functions in hardware according to the specific user requirements. The HDL code is platform independent and can be used for FPGA as well as ASIC implementations. Input parameters to the system are the approximation error, input range, and the approximation method. Three different user-selectable methods for approximating the functions are programmed in the toolbox. All implemented approximation methods avoid the use of multipliers for their implementation, as multipliers are expensive hardware components in terms of area and speed.</abstract><pub>IEEE</pub><doi>10.1109/EIT.2009.5189648</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2154-0357 |
ispartof | 2009 IEEE International Conference on Electro/Information Technology, 2009, p.389-392 |
issn | 2154-0357 2154-0373 |
language | eng |
recordid | cdi_ieee_primary_5189648 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation methods Artificial neural networks Delay Electronic Design Automation Field programmable gate arrays Hardware design languages Hardware implementation Hyperbolic tangent function MATLAB Network synthesis Piecewise linear approximation Piecewise linear techniques Sigmoid function Table lookup Toolbox |
title | Artificial neural networks activation function HDL coder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artificial%20neural%20networks%20activation%20function%20HDL%20coder&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Electro/Information%20Technology&rft.au=Namin,%20A.H.&rft.date=2009-06&rft.spage=389&rft.epage=392&rft.pages=389-392&rft.issn=2154-0357&rft.eissn=2154-0373&rft.isbn=9781424433544&rft.isbn_list=1424433541&rft_id=info:doi/10.1109/EIT.2009.5189648&rft_dat=%3Cieee_6IE%3E5189648%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424433551&rft.eisbn_list=142443355X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5189648&rfr_iscdi=true |