Artificial neural networks activation function HDL coder

The sigmoid and hyperbolic tangent functions are usually used as the activation functions in Artificial Neural Networks (ANNs). The exponential nature of these functions make them difficult for hardware implementation. Hence, several different methods for approximating them in hardware are proposed....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Namin, A.H., Leboeuf, K., Huapeng Wu, Ahmadi, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 392
container_issue
container_start_page 389
container_title
container_volume
creator Namin, A.H.
Leboeuf, K.
Huapeng Wu
Ahmadi, M.
description The sigmoid and hyperbolic tangent functions are usually used as the activation functions in Artificial Neural Networks (ANNs). The exponential nature of these functions make them difficult for hardware implementation. Hence, several different methods for approximating them in hardware are proposed. In this work, we present a MATLAB toolbox called the ldquoSigTan HDL Coderrdquo, that generates synthesizable HDL Code which approximates these functions in hardware according to the specific user requirements. The HDL code is platform independent and can be used for FPGA as well as ASIC implementations. Input parameters to the system are the approximation error, input range, and the approximation method. Three different user-selectable methods for approximating the functions are programmed in the toolbox. All implemented approximation methods avoid the use of multipliers for their implementation, as multipliers are expensive hardware components in terms of area and speed.
doi_str_mv 10.1109/EIT.2009.5189648
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5189648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5189648</ieee_id><sourcerecordid>5189648</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f67ca16b0954d408b503306701ffaee6b15380662c9b23ddd53651393345e8ee3</originalsourceid><addsrcrecordid>eNpVkF1LwzAYhePHwDl7L3jTP9D6Jm-SJpdjTjcoeNP7kaYJRGcraab47y3bELw6Bw4853AIuadQUgr6cb1tSgagS0GVllxdkExXinLGOaIQ9JLMGRW8AKzw6l_G-fVfJqoZuZ0wSoOugN6QbBzfAGBqkJqpOVHLmIIPNph93rtDPEr6HuL7mBubwpdJYehzf-jt0Wye6twOnYt3ZObNfnTZWRekeV43q01Rv75sV8u6CBpS4WVlDZUtaME7DqoVgAhymuK9cU62VKACKZnVLcOu6wRKQVEjcuGUc7ggDydscM7tPmP4MPFnd_4EfwGxC0yv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artificial neural networks activation function HDL coder</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Namin, A.H. ; Leboeuf, K. ; Huapeng Wu ; Ahmadi, M.</creator><creatorcontrib>Namin, A.H. ; Leboeuf, K. ; Huapeng Wu ; Ahmadi, M.</creatorcontrib><description>The sigmoid and hyperbolic tangent functions are usually used as the activation functions in Artificial Neural Networks (ANNs). The exponential nature of these functions make them difficult for hardware implementation. Hence, several different methods for approximating them in hardware are proposed. In this work, we present a MATLAB toolbox called the ldquoSigTan HDL Coderrdquo, that generates synthesizable HDL Code which approximates these functions in hardware according to the specific user requirements. The HDL code is platform independent and can be used for FPGA as well as ASIC implementations. Input parameters to the system are the approximation error, input range, and the approximation method. Three different user-selectable methods for approximating the functions are programmed in the toolbox. All implemented approximation methods avoid the use of multipliers for their implementation, as multipliers are expensive hardware components in terms of area and speed.</description><identifier>ISSN: 2154-0357</identifier><identifier>ISBN: 9781424433544</identifier><identifier>ISBN: 1424433541</identifier><identifier>EISSN: 2154-0373</identifier><identifier>EISBN: 9781424433551</identifier><identifier>EISBN: 142443355X</identifier><identifier>DOI: 10.1109/EIT.2009.5189648</identifier><identifier>LCCN: 2008909701</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Artificial neural networks ; Delay ; Electronic Design Automation ; Field programmable gate arrays ; Hardware design languages ; Hardware implementation ; Hyperbolic tangent function ; MATLAB ; Network synthesis ; Piecewise linear approximation ; Piecewise linear techniques ; Sigmoid function ; Table lookup ; Toolbox</subject><ispartof>2009 IEEE International Conference on Electro/Information Technology, 2009, p.389-392</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5189648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5189648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Namin, A.H.</creatorcontrib><creatorcontrib>Leboeuf, K.</creatorcontrib><creatorcontrib>Huapeng Wu</creatorcontrib><creatorcontrib>Ahmadi, M.</creatorcontrib><title>Artificial neural networks activation function HDL coder</title><title>2009 IEEE International Conference on Electro/Information Technology</title><addtitle>EIT</addtitle><description>The sigmoid and hyperbolic tangent functions are usually used as the activation functions in Artificial Neural Networks (ANNs). The exponential nature of these functions make them difficult for hardware implementation. Hence, several different methods for approximating them in hardware are proposed. In this work, we present a MATLAB toolbox called the ldquoSigTan HDL Coderrdquo, that generates synthesizable HDL Code which approximates these functions in hardware according to the specific user requirements. The HDL code is platform independent and can be used for FPGA as well as ASIC implementations. Input parameters to the system are the approximation error, input range, and the approximation method. Three different user-selectable methods for approximating the functions are programmed in the toolbox. All implemented approximation methods avoid the use of multipliers for their implementation, as multipliers are expensive hardware components in terms of area and speed.</description><subject>Approximation methods</subject><subject>Artificial neural networks</subject><subject>Delay</subject><subject>Electronic Design Automation</subject><subject>Field programmable gate arrays</subject><subject>Hardware design languages</subject><subject>Hardware implementation</subject><subject>Hyperbolic tangent function</subject><subject>MATLAB</subject><subject>Network synthesis</subject><subject>Piecewise linear approximation</subject><subject>Piecewise linear techniques</subject><subject>Sigmoid function</subject><subject>Table lookup</subject><subject>Toolbox</subject><issn>2154-0357</issn><issn>2154-0373</issn><isbn>9781424433544</isbn><isbn>1424433541</isbn><isbn>9781424433551</isbn><isbn>142443355X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkF1LwzAYhePHwDl7L3jTP9D6Jm-SJpdjTjcoeNP7kaYJRGcraab47y3bELw6Bw4853AIuadQUgr6cb1tSgagS0GVllxdkExXinLGOaIQ9JLMGRW8AKzw6l_G-fVfJqoZuZ0wSoOugN6QbBzfAGBqkJqpOVHLmIIPNph93rtDPEr6HuL7mBubwpdJYehzf-jt0Wye6twOnYt3ZObNfnTZWRekeV43q01Rv75sV8u6CBpS4WVlDZUtaME7DqoVgAhymuK9cU62VKACKZnVLcOu6wRKQVEjcuGUc7ggDydscM7tPmP4MPFnd_4EfwGxC0yv</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Namin, A.H.</creator><creator>Leboeuf, K.</creator><creator>Huapeng Wu</creator><creator>Ahmadi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Artificial neural networks activation function HDL coder</title><author>Namin, A.H. ; Leboeuf, K. ; Huapeng Wu ; Ahmadi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f67ca16b0954d408b503306701ffaee6b15380662c9b23ddd53651393345e8ee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation methods</topic><topic>Artificial neural networks</topic><topic>Delay</topic><topic>Electronic Design Automation</topic><topic>Field programmable gate arrays</topic><topic>Hardware design languages</topic><topic>Hardware implementation</topic><topic>Hyperbolic tangent function</topic><topic>MATLAB</topic><topic>Network synthesis</topic><topic>Piecewise linear approximation</topic><topic>Piecewise linear techniques</topic><topic>Sigmoid function</topic><topic>Table lookup</topic><topic>Toolbox</topic><toplevel>online_resources</toplevel><creatorcontrib>Namin, A.H.</creatorcontrib><creatorcontrib>Leboeuf, K.</creatorcontrib><creatorcontrib>Huapeng Wu</creatorcontrib><creatorcontrib>Ahmadi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Namin, A.H.</au><au>Leboeuf, K.</au><au>Huapeng Wu</au><au>Ahmadi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artificial neural networks activation function HDL coder</atitle><btitle>2009 IEEE International Conference on Electro/Information Technology</btitle><stitle>EIT</stitle><date>2009-06</date><risdate>2009</risdate><spage>389</spage><epage>392</epage><pages>389-392</pages><issn>2154-0357</issn><eissn>2154-0373</eissn><isbn>9781424433544</isbn><isbn>1424433541</isbn><eisbn>9781424433551</eisbn><eisbn>142443355X</eisbn><abstract>The sigmoid and hyperbolic tangent functions are usually used as the activation functions in Artificial Neural Networks (ANNs). The exponential nature of these functions make them difficult for hardware implementation. Hence, several different methods for approximating them in hardware are proposed. In this work, we present a MATLAB toolbox called the ldquoSigTan HDL Coderrdquo, that generates synthesizable HDL Code which approximates these functions in hardware according to the specific user requirements. The HDL code is platform independent and can be used for FPGA as well as ASIC implementations. Input parameters to the system are the approximation error, input range, and the approximation method. Three different user-selectable methods for approximating the functions are programmed in the toolbox. All implemented approximation methods avoid the use of multipliers for their implementation, as multipliers are expensive hardware components in terms of area and speed.</abstract><pub>IEEE</pub><doi>10.1109/EIT.2009.5189648</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2154-0357
ispartof 2009 IEEE International Conference on Electro/Information Technology, 2009, p.389-392
issn 2154-0357
2154-0373
language eng
recordid cdi_ieee_primary_5189648
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Artificial neural networks
Delay
Electronic Design Automation
Field programmable gate arrays
Hardware design languages
Hardware implementation
Hyperbolic tangent function
MATLAB
Network synthesis
Piecewise linear approximation
Piecewise linear techniques
Sigmoid function
Table lookup
Toolbox
title Artificial neural networks activation function HDL coder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artificial%20neural%20networks%20activation%20function%20HDL%20coder&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Electro/Information%20Technology&rft.au=Namin,%20A.H.&rft.date=2009-06&rft.spage=389&rft.epage=392&rft.pages=389-392&rft.issn=2154-0357&rft.eissn=2154-0373&rft.isbn=9781424433544&rft.isbn_list=1424433541&rft_id=info:doi/10.1109/EIT.2009.5189648&rft_dat=%3Cieee_6IE%3E5189648%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424433551&rft.eisbn_list=142443355X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5189648&rfr_iscdi=true