Systematization of all resonance modes in circular dielectric cavities
Circular dielectric cavities are key components for the construction of optic microresonators and microlasers. They are one of very few cases where the transcendental equations for complex eigenmodes (resonances) of an open system (dielectric cavity) can be found analytically in an exact manner. The...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Dettmann, C.P. Morozov, G.V. Sieber, M. Waalkens, H. |
description | Circular dielectric cavities are key components for the construction of optic microresonators and microlasers. They are one of very few cases where the transcendental equations for complex eigenmodes (resonances) of an open system (dielectric cavity) can be found analytically in an exact manner. The behaviour of those eigenvalues in the small opening limit, i.e. when the refractive index of the cavity goes to infinity, is analysed. The analysis allows one to clearly distinguish between internal (Feshbach) and external (shape) resonance modes for both TM and TE polarizations. As a result, unambiguous azimuthal and radial modal indices are assigned to each internal and external resonance mode. |
doi_str_mv | 10.1109/ICTON.2009.5185122 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5185122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5185122</ieee_id><sourcerecordid>5185122</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1342-ad73bbc356e244446237c221243a31c39411b1452c5668abc7b4a28fec30fe5e3</originalsourceid><addsrcrecordid>eNpVUE1LAzEUjGjBWvcP6CV_YGvee8kme5RitVDswXou2fQtRPZDNqtQf70t9uLAMMxhhmGEuAM1B1Dlw2qx3bzOUalybsAZQLwQWWkdaNRaO7R4-c8bdyWmCAXmlqiciJtTtFTGKHctspQ-1BHakNJ2KpZvhzRy68f4c2Tfyb6WvmnkwKnvfBdYtv2ek4ydDHEIX40f5D5yw2EcYpDBf8cxcroVk9o3ibOzzsT78mm7eMnXm-fV4nGdRyCNud9bqqpApuDTVl0g2YAIqMkTBCo1QAXaYDBF4XwVbKU9upoDqZoN00zc__VGZt59DrH1w2F3voV-AbJKUUQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Systematization of all resonance modes in circular dielectric cavities</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dettmann, C.P. ; Morozov, G.V. ; Sieber, M. ; Waalkens, H.</creator><creatorcontrib>Dettmann, C.P. ; Morozov, G.V. ; Sieber, M. ; Waalkens, H.</creatorcontrib><description>Circular dielectric cavities are key components for the construction of optic microresonators and microlasers. They are one of very few cases where the transcendental equations for complex eigenmodes (resonances) of an open system (dielectric cavity) can be found analytically in an exact manner. The behaviour of those eigenvalues in the small opening limit, i.e. when the refractive index of the cavity goes to infinity, is analysed. The analysis allows one to clearly distinguish between internal (Feshbach) and external (shape) resonance modes for both TM and TE polarizations. As a result, unambiguous azimuthal and radial modal indices are assigned to each internal and external resonance mode.</description><identifier>ISSN: 2162-7339</identifier><identifier>ISBN: 9781424448258</identifier><identifier>ISBN: 1424448255</identifier><identifier>EISBN: 9781424448272</identifier><identifier>EISBN: 1424448263</identifier><identifier>EISBN: 9781424448265</identifier><identifier>EISBN: 1424448271</identifier><identifier>DOI: 10.1109/ICTON.2009.5185122</identifier><identifier>LCCN: 2009905508</identifier><language>eng</language><publisher>IEEE</publisher><subject>circular dielectric cavity ; Dielectrics ; Eigenvalues and eigenfunctions ; Equations ; internal/external resonances ; Microcavities ; Open systems ; Optical devices ; Optical refraction ; Optical variables control ; Refractive index ; Resonance ; TM/TE modes</subject><ispartof>2009 11th International Conference on Transparent Optical Networks, 2009, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5185122$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5185122$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dettmann, C.P.</creatorcontrib><creatorcontrib>Morozov, G.V.</creatorcontrib><creatorcontrib>Sieber, M.</creatorcontrib><creatorcontrib>Waalkens, H.</creatorcontrib><title>Systematization of all resonance modes in circular dielectric cavities</title><title>2009 11th International Conference on Transparent Optical Networks</title><addtitle>ICTON</addtitle><description>Circular dielectric cavities are key components for the construction of optic microresonators and microlasers. They are one of very few cases where the transcendental equations for complex eigenmodes (resonances) of an open system (dielectric cavity) can be found analytically in an exact manner. The behaviour of those eigenvalues in the small opening limit, i.e. when the refractive index of the cavity goes to infinity, is analysed. The analysis allows one to clearly distinguish between internal (Feshbach) and external (shape) resonance modes for both TM and TE polarizations. As a result, unambiguous azimuthal and radial modal indices are assigned to each internal and external resonance mode.</description><subject>circular dielectric cavity</subject><subject>Dielectrics</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equations</subject><subject>internal/external resonances</subject><subject>Microcavities</subject><subject>Open systems</subject><subject>Optical devices</subject><subject>Optical refraction</subject><subject>Optical variables control</subject><subject>Refractive index</subject><subject>Resonance</subject><subject>TM/TE modes</subject><issn>2162-7339</issn><isbn>9781424448258</isbn><isbn>1424448255</isbn><isbn>9781424448272</isbn><isbn>1424448263</isbn><isbn>9781424448265</isbn><isbn>1424448271</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUE1LAzEUjGjBWvcP6CV_YGvee8kme5RitVDswXou2fQtRPZDNqtQf70t9uLAMMxhhmGEuAM1B1Dlw2qx3bzOUalybsAZQLwQWWkdaNRaO7R4-c8bdyWmCAXmlqiciJtTtFTGKHctspQ-1BHakNJ2KpZvhzRy68f4c2Tfyb6WvmnkwKnvfBdYtv2ek4ydDHEIX40f5D5yw2EcYpDBf8cxcroVk9o3ibOzzsT78mm7eMnXm-fV4nGdRyCNud9bqqpApuDTVl0g2YAIqMkTBCo1QAXaYDBF4XwVbKU9upoDqZoN00zc__VGZt59DrH1w2F3voV-AbJKUUQ</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Dettmann, C.P.</creator><creator>Morozov, G.V.</creator><creator>Sieber, M.</creator><creator>Waalkens, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Systematization of all resonance modes in circular dielectric cavities</title><author>Dettmann, C.P. ; Morozov, G.V. ; Sieber, M. ; Waalkens, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1342-ad73bbc356e244446237c221243a31c39411b1452c5668abc7b4a28fec30fe5e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>circular dielectric cavity</topic><topic>Dielectrics</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equations</topic><topic>internal/external resonances</topic><topic>Microcavities</topic><topic>Open systems</topic><topic>Optical devices</topic><topic>Optical refraction</topic><topic>Optical variables control</topic><topic>Refractive index</topic><topic>Resonance</topic><topic>TM/TE modes</topic><toplevel>online_resources</toplevel><creatorcontrib>Dettmann, C.P.</creatorcontrib><creatorcontrib>Morozov, G.V.</creatorcontrib><creatorcontrib>Sieber, M.</creatorcontrib><creatorcontrib>Waalkens, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dettmann, C.P.</au><au>Morozov, G.V.</au><au>Sieber, M.</au><au>Waalkens, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Systematization of all resonance modes in circular dielectric cavities</atitle><btitle>2009 11th International Conference on Transparent Optical Networks</btitle><stitle>ICTON</stitle><date>2009-06</date><risdate>2009</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2162-7339</issn><isbn>9781424448258</isbn><isbn>1424448255</isbn><eisbn>9781424448272</eisbn><eisbn>1424448263</eisbn><eisbn>9781424448265</eisbn><eisbn>1424448271</eisbn><abstract>Circular dielectric cavities are key components for the construction of optic microresonators and microlasers. They are one of very few cases where the transcendental equations for complex eigenmodes (resonances) of an open system (dielectric cavity) can be found analytically in an exact manner. The behaviour of those eigenvalues in the small opening limit, i.e. when the refractive index of the cavity goes to infinity, is analysed. The analysis allows one to clearly distinguish between internal (Feshbach) and external (shape) resonance modes for both TM and TE polarizations. As a result, unambiguous azimuthal and radial modal indices are assigned to each internal and external resonance mode.</abstract><pub>IEEE</pub><doi>10.1109/ICTON.2009.5185122</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-7339 |
ispartof | 2009 11th International Conference on Transparent Optical Networks, 2009, p.1-4 |
issn | 2162-7339 |
language | eng |
recordid | cdi_ieee_primary_5185122 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | circular dielectric cavity Dielectrics Eigenvalues and eigenfunctions Equations internal/external resonances Microcavities Open systems Optical devices Optical refraction Optical variables control Refractive index Resonance TM/TE modes |
title | Systematization of all resonance modes in circular dielectric cavities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Systematization%20of%20all%20resonance%20modes%20in%20circular%20dielectric%20cavities&rft.btitle=2009%2011th%20International%20Conference%20on%20Transparent%20Optical%20Networks&rft.au=Dettmann,%20C.P.&rft.date=2009-06&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2162-7339&rft.isbn=9781424448258&rft.isbn_list=1424448255&rft_id=info:doi/10.1109/ICTON.2009.5185122&rft_dat=%3Cieee_6IE%3E5185122%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424448272&rft.eisbn_list=1424448263&rft.eisbn_list=9781424448265&rft.eisbn_list=1424448271&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5185122&rfr_iscdi=true |