Systematization of all resonance modes in circular dielectric cavities

Circular dielectric cavities are key components for the construction of optic microresonators and microlasers. They are one of very few cases where the transcendental equations for complex eigenmodes (resonances) of an open system (dielectric cavity) can be found analytically in an exact manner. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dettmann, C.P., Morozov, G.V., Sieber, M., Waalkens, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Dettmann, C.P.
Morozov, G.V.
Sieber, M.
Waalkens, H.
description Circular dielectric cavities are key components for the construction of optic microresonators and microlasers. They are one of very few cases where the transcendental equations for complex eigenmodes (resonances) of an open system (dielectric cavity) can be found analytically in an exact manner. The behaviour of those eigenvalues in the small opening limit, i.e. when the refractive index of the cavity goes to infinity, is analysed. The analysis allows one to clearly distinguish between internal (Feshbach) and external (shape) resonance modes for both TM and TE polarizations. As a result, unambiguous azimuthal and radial modal indices are assigned to each internal and external resonance mode.
doi_str_mv 10.1109/ICTON.2009.5185122
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5185122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5185122</ieee_id><sourcerecordid>5185122</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1342-ad73bbc356e244446237c221243a31c39411b1452c5668abc7b4a28fec30fe5e3</originalsourceid><addsrcrecordid>eNpVUE1LAzEUjGjBWvcP6CV_YGvee8kme5RitVDswXou2fQtRPZDNqtQf70t9uLAMMxhhmGEuAM1B1Dlw2qx3bzOUalybsAZQLwQWWkdaNRaO7R4-c8bdyWmCAXmlqiciJtTtFTGKHctspQ-1BHakNJ2KpZvhzRy68f4c2Tfyb6WvmnkwKnvfBdYtv2ek4ydDHEIX40f5D5yw2EcYpDBf8cxcroVk9o3ibOzzsT78mm7eMnXm-fV4nGdRyCNud9bqqpApuDTVl0g2YAIqMkTBCo1QAXaYDBF4XwVbKU9upoDqZoN00zc__VGZt59DrH1w2F3voV-AbJKUUQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Systematization of all resonance modes in circular dielectric cavities</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dettmann, C.P. ; Morozov, G.V. ; Sieber, M. ; Waalkens, H.</creator><creatorcontrib>Dettmann, C.P. ; Morozov, G.V. ; Sieber, M. ; Waalkens, H.</creatorcontrib><description>Circular dielectric cavities are key components for the construction of optic microresonators and microlasers. They are one of very few cases where the transcendental equations for complex eigenmodes (resonances) of an open system (dielectric cavity) can be found analytically in an exact manner. The behaviour of those eigenvalues in the small opening limit, i.e. when the refractive index of the cavity goes to infinity, is analysed. The analysis allows one to clearly distinguish between internal (Feshbach) and external (shape) resonance modes for both TM and TE polarizations. As a result, unambiguous azimuthal and radial modal indices are assigned to each internal and external resonance mode.</description><identifier>ISSN: 2162-7339</identifier><identifier>ISBN: 9781424448258</identifier><identifier>ISBN: 1424448255</identifier><identifier>EISBN: 9781424448272</identifier><identifier>EISBN: 1424448263</identifier><identifier>EISBN: 9781424448265</identifier><identifier>EISBN: 1424448271</identifier><identifier>DOI: 10.1109/ICTON.2009.5185122</identifier><identifier>LCCN: 2009905508</identifier><language>eng</language><publisher>IEEE</publisher><subject>circular dielectric cavity ; Dielectrics ; Eigenvalues and eigenfunctions ; Equations ; internal/external resonances ; Microcavities ; Open systems ; Optical devices ; Optical refraction ; Optical variables control ; Refractive index ; Resonance ; TM/TE modes</subject><ispartof>2009 11th International Conference on Transparent Optical Networks, 2009, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5185122$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5185122$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dettmann, C.P.</creatorcontrib><creatorcontrib>Morozov, G.V.</creatorcontrib><creatorcontrib>Sieber, M.</creatorcontrib><creatorcontrib>Waalkens, H.</creatorcontrib><title>Systematization of all resonance modes in circular dielectric cavities</title><title>2009 11th International Conference on Transparent Optical Networks</title><addtitle>ICTON</addtitle><description>Circular dielectric cavities are key components for the construction of optic microresonators and microlasers. They are one of very few cases where the transcendental equations for complex eigenmodes (resonances) of an open system (dielectric cavity) can be found analytically in an exact manner. The behaviour of those eigenvalues in the small opening limit, i.e. when the refractive index of the cavity goes to infinity, is analysed. The analysis allows one to clearly distinguish between internal (Feshbach) and external (shape) resonance modes for both TM and TE polarizations. As a result, unambiguous azimuthal and radial modal indices are assigned to each internal and external resonance mode.</description><subject>circular dielectric cavity</subject><subject>Dielectrics</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equations</subject><subject>internal/external resonances</subject><subject>Microcavities</subject><subject>Open systems</subject><subject>Optical devices</subject><subject>Optical refraction</subject><subject>Optical variables control</subject><subject>Refractive index</subject><subject>Resonance</subject><subject>TM/TE modes</subject><issn>2162-7339</issn><isbn>9781424448258</isbn><isbn>1424448255</isbn><isbn>9781424448272</isbn><isbn>1424448263</isbn><isbn>9781424448265</isbn><isbn>1424448271</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUE1LAzEUjGjBWvcP6CV_YGvee8kme5RitVDswXou2fQtRPZDNqtQf70t9uLAMMxhhmGEuAM1B1Dlw2qx3bzOUalybsAZQLwQWWkdaNRaO7R4-c8bdyWmCAXmlqiciJtTtFTGKHctspQ-1BHakNJ2KpZvhzRy68f4c2Tfyb6WvmnkwKnvfBdYtv2ek4ydDHEIX40f5D5yw2EcYpDBf8cxcroVk9o3ibOzzsT78mm7eMnXm-fV4nGdRyCNud9bqqpApuDTVl0g2YAIqMkTBCo1QAXaYDBF4XwVbKU9upoDqZoN00zc__VGZt59DrH1w2F3voV-AbJKUUQ</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Dettmann, C.P.</creator><creator>Morozov, G.V.</creator><creator>Sieber, M.</creator><creator>Waalkens, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Systematization of all resonance modes in circular dielectric cavities</title><author>Dettmann, C.P. ; Morozov, G.V. ; Sieber, M. ; Waalkens, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1342-ad73bbc356e244446237c221243a31c39411b1452c5668abc7b4a28fec30fe5e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>circular dielectric cavity</topic><topic>Dielectrics</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equations</topic><topic>internal/external resonances</topic><topic>Microcavities</topic><topic>Open systems</topic><topic>Optical devices</topic><topic>Optical refraction</topic><topic>Optical variables control</topic><topic>Refractive index</topic><topic>Resonance</topic><topic>TM/TE modes</topic><toplevel>online_resources</toplevel><creatorcontrib>Dettmann, C.P.</creatorcontrib><creatorcontrib>Morozov, G.V.</creatorcontrib><creatorcontrib>Sieber, M.</creatorcontrib><creatorcontrib>Waalkens, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dettmann, C.P.</au><au>Morozov, G.V.</au><au>Sieber, M.</au><au>Waalkens, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Systematization of all resonance modes in circular dielectric cavities</atitle><btitle>2009 11th International Conference on Transparent Optical Networks</btitle><stitle>ICTON</stitle><date>2009-06</date><risdate>2009</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2162-7339</issn><isbn>9781424448258</isbn><isbn>1424448255</isbn><eisbn>9781424448272</eisbn><eisbn>1424448263</eisbn><eisbn>9781424448265</eisbn><eisbn>1424448271</eisbn><abstract>Circular dielectric cavities are key components for the construction of optic microresonators and microlasers. They are one of very few cases where the transcendental equations for complex eigenmodes (resonances) of an open system (dielectric cavity) can be found analytically in an exact manner. The behaviour of those eigenvalues in the small opening limit, i.e. when the refractive index of the cavity goes to infinity, is analysed. The analysis allows one to clearly distinguish between internal (Feshbach) and external (shape) resonance modes for both TM and TE polarizations. As a result, unambiguous azimuthal and radial modal indices are assigned to each internal and external resonance mode.</abstract><pub>IEEE</pub><doi>10.1109/ICTON.2009.5185122</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-7339
ispartof 2009 11th International Conference on Transparent Optical Networks, 2009, p.1-4
issn 2162-7339
language eng
recordid cdi_ieee_primary_5185122
source IEEE Electronic Library (IEL) Conference Proceedings
subjects circular dielectric cavity
Dielectrics
Eigenvalues and eigenfunctions
Equations
internal/external resonances
Microcavities
Open systems
Optical devices
Optical refraction
Optical variables control
Refractive index
Resonance
TM/TE modes
title Systematization of all resonance modes in circular dielectric cavities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Systematization%20of%20all%20resonance%20modes%20in%20circular%20dielectric%20cavities&rft.btitle=2009%2011th%20International%20Conference%20on%20Transparent%20Optical%20Networks&rft.au=Dettmann,%20C.P.&rft.date=2009-06&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2162-7339&rft.isbn=9781424448258&rft.isbn_list=1424448255&rft_id=info:doi/10.1109/ICTON.2009.5185122&rft_dat=%3Cieee_6IE%3E5185122%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424448272&rft.eisbn_list=1424448263&rft.eisbn_list=9781424448265&rft.eisbn_list=1424448271&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5185122&rfr_iscdi=true