An approach for robust mapping, detection, tracking and classification in dynamic environments
Understanding its environment remains a difficult problem for a mobile robot. Several intricate problems (localization, mapping, detection, tracking, classification) have indeed to be solved concurrently. However, most perception algorithms solve these issues independently leading to limited perform...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Gate, G. Nashashibi, F. |
description | Understanding its environment remains a difficult problem for a mobile robot. Several intricate problems (localization, mapping, detection, tracking, classification) have indeed to be solved concurrently. However, most perception algorithms solve these issues independently leading to limited performances in highly changing environments. We present in this paper an original approach where the mapping, the tracking, the detection and the classification problems are addressed concurrently and where the perceptual knowledge of the robot is described using four recursively estimated discrete probability mass functions. Our first experiments based on simulated and real range data show that our approach is able to cope with complex outdoor situations. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5174739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5174739</ieee_id><sourcerecordid>5174739</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-cad1e5efc0ff0e59cce8ae113caa2df7eb6cd9f947f223e65c935dde87798ee23</originalsourceid><addsrcrecordid>eNotjMtKAzEUQCMiqHW-wE0-oAPJJJlMlqX4gkI3XVtub2402skMSRT691Z0deAcOBfsVg3K9UIo4y5Z4-wgdae1Howx16wp5UMIIV1vTSdu2OsqcZjnPAG-8zBlnqfDV6l8PMuY3pbcUyWscUpLXjPg51lySJ7jEUqJISL8Rh4T96cEY0RO6TvmKY2UarljVwGOhZp_Ltju8WG3fm4326eX9WrTRidqi-AlGQooQhBkHCINQFIqBOh8sHTo0bvgtA1dp6g36JTxngZr3UDUqQW7_9tGItrPOY6QT3sjrbbKqR8bbFIr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An approach for robust mapping, detection, tracking and classification in dynamic environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gate, G. ; Nashashibi, F.</creator><creatorcontrib>Gate, G. ; Nashashibi, F.</creatorcontrib><description>Understanding its environment remains a difficult problem for a mobile robot. Several intricate problems (localization, mapping, detection, tracking, classification) have indeed to be solved concurrently. However, most perception algorithms solve these issues independently leading to limited performances in highly changing environments. We present in this paper an original approach where the mapping, the tracking, the detection and the classification problems are addressed concurrently and where the perceptual knowledge of the robot is described using four recursively estimated discrete probability mass functions. Our first experiments based on simulated and real range data show that our approach is able to cope with complex outdoor situations.</description><identifier>ISBN: 9781424448555</identifier><identifier>ISBN: 1424448557</identifier><identifier>EISBN: 3839600359</identifier><identifier>EISBN: 9783839600351</identifier><language>eng</language><publisher>IEEE</publisher><subject>Eyes ; Inference algorithms ; Laser radar ; Layout ; Mobile robots ; Object detection ; Radar tracking ; Recursive estimation ; Robustness ; Simultaneous localization and mapping</subject><ispartof>2009 International Conference on Advanced Robotics, 2009, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5174739$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5174739$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gate, G.</creatorcontrib><creatorcontrib>Nashashibi, F.</creatorcontrib><title>An approach for robust mapping, detection, tracking and classification in dynamic environments</title><title>2009 International Conference on Advanced Robotics</title><addtitle>ICAR</addtitle><description>Understanding its environment remains a difficult problem for a mobile robot. Several intricate problems (localization, mapping, detection, tracking, classification) have indeed to be solved concurrently. However, most perception algorithms solve these issues independently leading to limited performances in highly changing environments. We present in this paper an original approach where the mapping, the tracking, the detection and the classification problems are addressed concurrently and where the perceptual knowledge of the robot is described using four recursively estimated discrete probability mass functions. Our first experiments based on simulated and real range data show that our approach is able to cope with complex outdoor situations.</description><subject>Eyes</subject><subject>Inference algorithms</subject><subject>Laser radar</subject><subject>Layout</subject><subject>Mobile robots</subject><subject>Object detection</subject><subject>Radar tracking</subject><subject>Recursive estimation</subject><subject>Robustness</subject><subject>Simultaneous localization and mapping</subject><isbn>9781424448555</isbn><isbn>1424448557</isbn><isbn>3839600359</isbn><isbn>9783839600351</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKAzEUQCMiqHW-wE0-oAPJJJlMlqX4gkI3XVtub2402skMSRT691Z0deAcOBfsVg3K9UIo4y5Z4-wgdae1Howx16wp5UMIIV1vTSdu2OsqcZjnPAG-8zBlnqfDV6l8PMuY3pbcUyWscUpLXjPg51lySJ7jEUqJISL8Rh4T96cEY0RO6TvmKY2UarljVwGOhZp_Ltju8WG3fm4326eX9WrTRidqi-AlGQooQhBkHCINQFIqBOh8sHTo0bvgtA1dp6g36JTxngZr3UDUqQW7_9tGItrPOY6QT3sjrbbKqR8bbFIr</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Gate, G.</creator><creator>Nashashibi, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>An approach for robust mapping, detection, tracking and classification in dynamic environments</title><author>Gate, G. ; Nashashibi, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-cad1e5efc0ff0e59cce8ae113caa2df7eb6cd9f947f223e65c935dde87798ee23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Eyes</topic><topic>Inference algorithms</topic><topic>Laser radar</topic><topic>Layout</topic><topic>Mobile robots</topic><topic>Object detection</topic><topic>Radar tracking</topic><topic>Recursive estimation</topic><topic>Robustness</topic><topic>Simultaneous localization and mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Gate, G.</creatorcontrib><creatorcontrib>Nashashibi, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gate, G.</au><au>Nashashibi, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An approach for robust mapping, detection, tracking and classification in dynamic environments</atitle><btitle>2009 International Conference on Advanced Robotics</btitle><stitle>ICAR</stitle><date>2009-06</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424448555</isbn><isbn>1424448557</isbn><eisbn>3839600359</eisbn><eisbn>9783839600351</eisbn><abstract>Understanding its environment remains a difficult problem for a mobile robot. Several intricate problems (localization, mapping, detection, tracking, classification) have indeed to be solved concurrently. However, most perception algorithms solve these issues independently leading to limited performances in highly changing environments. We present in this paper an original approach where the mapping, the tracking, the detection and the classification problems are addressed concurrently and where the perceptual knowledge of the robot is described using four recursively estimated discrete probability mass functions. Our first experiments based on simulated and real range data show that our approach is able to cope with complex outdoor situations.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424448555 |
ispartof | 2009 International Conference on Advanced Robotics, 2009, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5174739 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Eyes Inference algorithms Laser radar Layout Mobile robots Object detection Radar tracking Recursive estimation Robustness Simultaneous localization and mapping |
title | An approach for robust mapping, detection, tracking and classification in dynamic environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20approach%20for%20robust%20mapping,%20detection,%20tracking%20and%20classification%20in%20dynamic%20environments&rft.btitle=2009%20International%20Conference%20on%20Advanced%20Robotics&rft.au=Gate,%20G.&rft.date=2009-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424448555&rft.isbn_list=1424448557&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5174739%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=3839600359&rft.eisbn_list=9783839600351&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5174739&rfr_iscdi=true |