An approach for robust mapping, detection, tracking and classification in dynamic environments

Understanding its environment remains a difficult problem for a mobile robot. Several intricate problems (localization, mapping, detection, tracking, classification) have indeed to be solved concurrently. However, most perception algorithms solve these issues independently leading to limited perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gate, G., Nashashibi, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Gate, G.
Nashashibi, F.
description Understanding its environment remains a difficult problem for a mobile robot. Several intricate problems (localization, mapping, detection, tracking, classification) have indeed to be solved concurrently. However, most perception algorithms solve these issues independently leading to limited performances in highly changing environments. We present in this paper an original approach where the mapping, the tracking, the detection and the classification problems are addressed concurrently and where the perceptual knowledge of the robot is described using four recursively estimated discrete probability mass functions. Our first experiments based on simulated and real range data show that our approach is able to cope with complex outdoor situations.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5174739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5174739</ieee_id><sourcerecordid>5174739</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-cad1e5efc0ff0e59cce8ae113caa2df7eb6cd9f947f223e65c935dde87798ee23</originalsourceid><addsrcrecordid>eNotjMtKAzEUQCMiqHW-wE0-oAPJJJlMlqX4gkI3XVtub2402skMSRT691Z0deAcOBfsVg3K9UIo4y5Z4-wgdae1Howx16wp5UMIIV1vTSdu2OsqcZjnPAG-8zBlnqfDV6l8PMuY3pbcUyWscUpLXjPg51lySJ7jEUqJISL8Rh4T96cEY0RO6TvmKY2UarljVwGOhZp_Ltju8WG3fm4326eX9WrTRidqi-AlGQooQhBkHCINQFIqBOh8sHTo0bvgtA1dp6g36JTxngZr3UDUqQW7_9tGItrPOY6QT3sjrbbKqR8bbFIr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An approach for robust mapping, detection, tracking and classification in dynamic environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gate, G. ; Nashashibi, F.</creator><creatorcontrib>Gate, G. ; Nashashibi, F.</creatorcontrib><description>Understanding its environment remains a difficult problem for a mobile robot. Several intricate problems (localization, mapping, detection, tracking, classification) have indeed to be solved concurrently. However, most perception algorithms solve these issues independently leading to limited performances in highly changing environments. We present in this paper an original approach where the mapping, the tracking, the detection and the classification problems are addressed concurrently and where the perceptual knowledge of the robot is described using four recursively estimated discrete probability mass functions. Our first experiments based on simulated and real range data show that our approach is able to cope with complex outdoor situations.</description><identifier>ISBN: 9781424448555</identifier><identifier>ISBN: 1424448557</identifier><identifier>EISBN: 3839600359</identifier><identifier>EISBN: 9783839600351</identifier><language>eng</language><publisher>IEEE</publisher><subject>Eyes ; Inference algorithms ; Laser radar ; Layout ; Mobile robots ; Object detection ; Radar tracking ; Recursive estimation ; Robustness ; Simultaneous localization and mapping</subject><ispartof>2009 International Conference on Advanced Robotics, 2009, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5174739$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5174739$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gate, G.</creatorcontrib><creatorcontrib>Nashashibi, F.</creatorcontrib><title>An approach for robust mapping, detection, tracking and classification in dynamic environments</title><title>2009 International Conference on Advanced Robotics</title><addtitle>ICAR</addtitle><description>Understanding its environment remains a difficult problem for a mobile robot. Several intricate problems (localization, mapping, detection, tracking, classification) have indeed to be solved concurrently. However, most perception algorithms solve these issues independently leading to limited performances in highly changing environments. We present in this paper an original approach where the mapping, the tracking, the detection and the classification problems are addressed concurrently and where the perceptual knowledge of the robot is described using four recursively estimated discrete probability mass functions. Our first experiments based on simulated and real range data show that our approach is able to cope with complex outdoor situations.</description><subject>Eyes</subject><subject>Inference algorithms</subject><subject>Laser radar</subject><subject>Layout</subject><subject>Mobile robots</subject><subject>Object detection</subject><subject>Radar tracking</subject><subject>Recursive estimation</subject><subject>Robustness</subject><subject>Simultaneous localization and mapping</subject><isbn>9781424448555</isbn><isbn>1424448557</isbn><isbn>3839600359</isbn><isbn>9783839600351</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKAzEUQCMiqHW-wE0-oAPJJJlMlqX4gkI3XVtub2402skMSRT691Z0deAcOBfsVg3K9UIo4y5Z4-wgdae1Howx16wp5UMIIV1vTSdu2OsqcZjnPAG-8zBlnqfDV6l8PMuY3pbcUyWscUpLXjPg51lySJ7jEUqJISL8Rh4T96cEY0RO6TvmKY2UarljVwGOhZp_Ltju8WG3fm4326eX9WrTRidqi-AlGQooQhBkHCINQFIqBOh8sHTo0bvgtA1dp6g36JTxngZr3UDUqQW7_9tGItrPOY6QT3sjrbbKqR8bbFIr</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Gate, G.</creator><creator>Nashashibi, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>An approach for robust mapping, detection, tracking and classification in dynamic environments</title><author>Gate, G. ; Nashashibi, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-cad1e5efc0ff0e59cce8ae113caa2df7eb6cd9f947f223e65c935dde87798ee23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Eyes</topic><topic>Inference algorithms</topic><topic>Laser radar</topic><topic>Layout</topic><topic>Mobile robots</topic><topic>Object detection</topic><topic>Radar tracking</topic><topic>Recursive estimation</topic><topic>Robustness</topic><topic>Simultaneous localization and mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Gate, G.</creatorcontrib><creatorcontrib>Nashashibi, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gate, G.</au><au>Nashashibi, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An approach for robust mapping, detection, tracking and classification in dynamic environments</atitle><btitle>2009 International Conference on Advanced Robotics</btitle><stitle>ICAR</stitle><date>2009-06</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424448555</isbn><isbn>1424448557</isbn><eisbn>3839600359</eisbn><eisbn>9783839600351</eisbn><abstract>Understanding its environment remains a difficult problem for a mobile robot. Several intricate problems (localization, mapping, detection, tracking, classification) have indeed to be solved concurrently. However, most perception algorithms solve these issues independently leading to limited performances in highly changing environments. We present in this paper an original approach where the mapping, the tracking, the detection and the classification problems are addressed concurrently and where the perceptual knowledge of the robot is described using four recursively estimated discrete probability mass functions. Our first experiments based on simulated and real range data show that our approach is able to cope with complex outdoor situations.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424448555
ispartof 2009 International Conference on Advanced Robotics, 2009, p.1-6
issn
language eng
recordid cdi_ieee_primary_5174739
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Eyes
Inference algorithms
Laser radar
Layout
Mobile robots
Object detection
Radar tracking
Recursive estimation
Robustness
Simultaneous localization and mapping
title An approach for robust mapping, detection, tracking and classification in dynamic environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20approach%20for%20robust%20mapping,%20detection,%20tracking%20and%20classification%20in%20dynamic%20environments&rft.btitle=2009%20International%20Conference%20on%20Advanced%20Robotics&rft.au=Gate,%20G.&rft.date=2009-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424448555&rft.isbn_list=1424448557&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5174739%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=3839600359&rft.eisbn_list=9783839600351&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5174739&rfr_iscdi=true