Canonical decomposition of steerable functions

Steerable functions find application in numerous problems in image processing, computer vision and computer graphics. As such, it is important to develop the appropriate mathematical tools to analyze them. In this paper, we introduce the mathematics of Lie group theory in the context of steerable fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hel-Or, Y., Teo, P.C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 816
container_issue
container_start_page 809
container_title
container_volume
creator Hel-Or, Y.
Teo, P.C.
description Steerable functions find application in numerous problems in image processing, computer vision and computer graphics. As such, it is important to develop the appropriate mathematical tools to analyze them. In this paper, we introduce the mathematics of Lie group theory in the context of steerable functions and present a canonical decomposition of these functions under any transformation group. The theory presented in this paper can be applied and extended in various ways.
doi_str_mv 10.1109/CVPR.1996.517165
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_517165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>517165</ieee_id><sourcerecordid>26112756</sourcerecordid><originalsourceid>FETCH-LOGICAL-i245t-711e027a4f48bc743fd41a575b64dd055ba770b5966b7b036db257f2980f01c03</originalsourceid><addsrcrecordid>eNotkL9LxTAURgMq-Hh2F6dObq33pkluM0rxFzxQRF1L0iYQaZva9A3-9yp1OvBx-IbD2CVCiQj6pvl4eS1Ra1VKJFTyhGWaaqixVsSlhlO2Q1BVoTTqc5al9AkAqJUGIXasbMwUp9CZIe9dF8c5prCGOOXR52l1bjF2cLk_Tt3fmi7YmTdDctk_9-z9_u6teSwOzw9Pze2hCFzItSBEB5yM8KK2HYnK9wKNJGmV6HuQ0hoisFIrZclCpXrLJXmua_CAHVR7dr39zkv8Orq0tmNInRsGM7l4TC1XiJyk-hWvNjE459p5CaNZvtutRPUDaZxQXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26112756</pqid></control><display><type>conference_proceeding</type><title>Canonical decomposition of steerable functions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hel-Or, Y. ; Teo, P.C.</creator><creatorcontrib>Hel-Or, Y. ; Teo, P.C.</creatorcontrib><description>Steerable functions find application in numerous problems in image processing, computer vision and computer graphics. As such, it is important to develop the appropriate mathematical tools to analyze them. In this paper, we introduce the mathematics of Lie group theory in the context of steerable functions and present a canonical decomposition of these functions under any transformation group. The theory presented in this paper can be applied and extended in various ways.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9780818672590</identifier><identifier>ISBN: 0818672595</identifier><identifier>DOI: 10.1109/CVPR.1996.517165</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Computer vision ; Convolution ; Image processing ; Kernel ; Linear systems ; NASA ; Nonlinear filters ; Pattern recognition ; Singular value decomposition</subject><ispartof>Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996, p.809-816</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/517165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/517165$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hel-Or, Y.</creatorcontrib><creatorcontrib>Teo, P.C.</creatorcontrib><title>Canonical decomposition of steerable functions</title><title>Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Steerable functions find application in numerous problems in image processing, computer vision and computer graphics. As such, it is important to develop the appropriate mathematical tools to analyze them. In this paper, we introduce the mathematics of Lie group theory in the context of steerable functions and present a canonical decomposition of these functions under any transformation group. The theory presented in this paper can be applied and extended in various ways.</description><subject>Computer science</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>Image processing</subject><subject>Kernel</subject><subject>Linear systems</subject><subject>NASA</subject><subject>Nonlinear filters</subject><subject>Pattern recognition</subject><subject>Singular value decomposition</subject><issn>1063-6919</issn><isbn>9780818672590</isbn><isbn>0818672595</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkL9LxTAURgMq-Hh2F6dObq33pkluM0rxFzxQRF1L0iYQaZva9A3-9yp1OvBx-IbD2CVCiQj6pvl4eS1Ra1VKJFTyhGWaaqixVsSlhlO2Q1BVoTTqc5al9AkAqJUGIXasbMwUp9CZIe9dF8c5prCGOOXR52l1bjF2cLk_Tt3fmi7YmTdDctk_9-z9_u6teSwOzw9Pze2hCFzItSBEB5yM8KK2HYnK9wKNJGmV6HuQ0hoisFIrZclCpXrLJXmua_CAHVR7dr39zkv8Orq0tmNInRsGM7l4TC1XiJyk-hWvNjE459p5CaNZvtutRPUDaZxQXQ</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Hel-Or, Y.</creator><creator>Teo, P.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1996</creationdate><title>Canonical decomposition of steerable functions</title><author>Hel-Or, Y. ; Teo, P.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i245t-711e027a4f48bc743fd41a575b64dd055ba770b5966b7b036db257f2980f01c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Computer science</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>Image processing</topic><topic>Kernel</topic><topic>Linear systems</topic><topic>NASA</topic><topic>Nonlinear filters</topic><topic>Pattern recognition</topic><topic>Singular value decomposition</topic><toplevel>online_resources</toplevel><creatorcontrib>Hel-Or, Y.</creatorcontrib><creatorcontrib>Teo, P.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hel-Or, Y.</au><au>Teo, P.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Canonical decomposition of steerable functions</atitle><btitle>Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>1996</date><risdate>1996</risdate><spage>809</spage><epage>816</epage><pages>809-816</pages><issn>1063-6919</issn><isbn>9780818672590</isbn><isbn>0818672595</isbn><abstract>Steerable functions find application in numerous problems in image processing, computer vision and computer graphics. As such, it is important to develop the appropriate mathematical tools to analyze them. In this paper, we introduce the mathematics of Lie group theory in the context of steerable functions and present a canonical decomposition of these functions under any transformation group. The theory presented in this paper can be applied and extended in various ways.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.1996.517165</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996, p.809-816
issn 1063-6919
language eng
recordid cdi_ieee_primary_517165
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Computer vision
Convolution
Image processing
Kernel
Linear systems
NASA
Nonlinear filters
Pattern recognition
Singular value decomposition
title Canonical decomposition of steerable functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Canonical%20decomposition%20of%20steerable%20functions&rft.btitle=Proceedings%20-%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Hel-Or,%20Y.&rft.date=1996&rft.spage=809&rft.epage=816&rft.pages=809-816&rft.issn=1063-6919&rft.isbn=9780818672590&rft.isbn_list=0818672595&rft_id=info:doi/10.1109/CVPR.1996.517165&rft_dat=%3Cproquest_6IE%3E26112756%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26112756&rft_id=info:pmid/&rft_ieee_id=517165&rfr_iscdi=true