Recognizing 3D objects by generating random actions

This paper presents a formal model of an active recognition system that can be programmed by learning. At each time step the system decides between producing an action to generate new data and stopping to issue the name of the object observed. The actions can be directed either towards the external...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Herbin, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue
container_start_page 35
container_title
container_volume
creator Herbin, S.
description This paper presents a formal model of an active recognition system that can be programmed by learning. At each time step the system decides between producing an action to generate new data and stopping to issue the name of the object observed. The actions can be directed either towards the external environment or towards the internal perceptual system of the agent. The decision strategy is based on a quantitative evaluation of the system learning experience. The problem studied is the recognition of chess pieces using a moving camera and a multiscale feature detector. The recognition is difficult because the objects are complex-neither polyhedral nor smooth-and rather similar between classes, especially in certain view configurations. The system uses the information obtained by observing internal state transitions when the camera is moved or when the feature detector scale is changed. A simulation of the agent and the environment is used for experimental measures of the model performances.
doi_str_mv 10.1109/CVPR.1996.517050
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_517050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>517050</ieee_id><sourcerecordid>26351116</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-896552eed81346236a42b91e3a2fe30ae6257bce848cc2dddaeb46052561c80c3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0-JKqSHTFlYkt5z45f7BEFCkiVQBWwRo7zGrlqkxKnQ_n1gMrAdIdzdIYrxBXCDBHsbfnxupyhtTTTWICGEzFBIJWRRXsqElsYMGiokNrC2T92IZIY1wCAlizk-USoJfu-7cJX6NpU3ad9vWY_xrQ-pC13PLjxFwyua_pt6vwY-i5eivOV20RO_nYq3ucPb-VTtnh5fC7vFlmQoMbMWNJaMjcGVU5SkctlbZGVkytW4JikLmrPJjfey6ZpHNc5gZaa0Bvwaipujt3d0H_uOY7VNkTPm43ruN_HSpLSiEg_4vVRDMxc7YawdcOhOl6jvgEkFVPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26351116</pqid></control><display><type>conference_proceeding</type><title>Recognizing 3D objects by generating random actions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Herbin, S.</creator><creatorcontrib>Herbin, S.</creatorcontrib><description>This paper presents a formal model of an active recognition system that can be programmed by learning. At each time step the system decides between producing an action to generate new data and stopping to issue the name of the object observed. The actions can be directed either towards the external environment or towards the internal perceptual system of the agent. The decision strategy is based on a quantitative evaluation of the system learning experience. The problem studied is the recognition of chess pieces using a moving camera and a multiscale feature detector. The recognition is difficult because the objects are complex-neither polyhedral nor smooth-and rather similar between classes, especially in certain view configurations. The system uses the information obtained by observing internal state transitions when the camera is moved or when the feature detector scale is changed. A simulation of the agent and the environment is used for experimental measures of the model performances.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9780818672590</identifier><identifier>ISBN: 0818672595</identifier><identifier>EISSN: 1063-6919</identifier><identifier>DOI: 10.1109/CVPR.1996.517050</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous agents ; Cameras ; Control systems ; Delay ; Differential equations ; Mobile robots ; Process control ; Random variables ; Robot vision systems ; Stochastic systems</subject><ispartof>PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT, 1996, p.35-40</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/517050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/517050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Herbin, S.</creatorcontrib><title>Recognizing 3D objects by generating random actions</title><title>PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT</title><addtitle>CVPR</addtitle><description>This paper presents a formal model of an active recognition system that can be programmed by learning. At each time step the system decides between producing an action to generate new data and stopping to issue the name of the object observed. The actions can be directed either towards the external environment or towards the internal perceptual system of the agent. The decision strategy is based on a quantitative evaluation of the system learning experience. The problem studied is the recognition of chess pieces using a moving camera and a multiscale feature detector. The recognition is difficult because the objects are complex-neither polyhedral nor smooth-and rather similar between classes, especially in certain view configurations. The system uses the information obtained by observing internal state transitions when the camera is moved or when the feature detector scale is changed. A simulation of the agent and the environment is used for experimental measures of the model performances.</description><subject>Autonomous agents</subject><subject>Cameras</subject><subject>Control systems</subject><subject>Delay</subject><subject>Differential equations</subject><subject>Mobile robots</subject><subject>Process control</subject><subject>Random variables</subject><subject>Robot vision systems</subject><subject>Stochastic systems</subject><issn>1063-6919</issn><issn>1063-6919</issn><isbn>9780818672590</isbn><isbn>0818672595</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0-JKqSHTFlYkt5z45f7BEFCkiVQBWwRo7zGrlqkxKnQ_n1gMrAdIdzdIYrxBXCDBHsbfnxupyhtTTTWICGEzFBIJWRRXsqElsYMGiokNrC2T92IZIY1wCAlizk-USoJfu-7cJX6NpU3ad9vWY_xrQ-pC13PLjxFwyua_pt6vwY-i5eivOV20RO_nYq3ucPb-VTtnh5fC7vFlmQoMbMWNJaMjcGVU5SkctlbZGVkytW4JikLmrPJjfey6ZpHNc5gZaa0Bvwaipujt3d0H_uOY7VNkTPm43ruN_HSpLSiEg_4vVRDMxc7YawdcOhOl6jvgEkFVPg</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Herbin, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1996</creationdate><title>Recognizing 3D objects by generating random actions</title><author>Herbin, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-896552eed81346236a42b91e3a2fe30ae6257bce848cc2dddaeb46052561c80c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Autonomous agents</topic><topic>Cameras</topic><topic>Control systems</topic><topic>Delay</topic><topic>Differential equations</topic><topic>Mobile robots</topic><topic>Process control</topic><topic>Random variables</topic><topic>Robot vision systems</topic><topic>Stochastic systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Herbin, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Herbin, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognizing 3D objects by generating random actions</atitle><btitle>PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT</btitle><stitle>CVPR</stitle><date>1996</date><risdate>1996</risdate><spage>35</spage><epage>40</epage><pages>35-40</pages><issn>1063-6919</issn><eissn>1063-6919</eissn><isbn>9780818672590</isbn><isbn>0818672595</isbn><abstract>This paper presents a formal model of an active recognition system that can be programmed by learning. At each time step the system decides between producing an action to generate new data and stopping to issue the name of the object observed. The actions can be directed either towards the external environment or towards the internal perceptual system of the agent. The decision strategy is based on a quantitative evaluation of the system learning experience. The problem studied is the recognition of chess pieces using a moving camera and a multiscale feature detector. The recognition is difficult because the objects are complex-neither polyhedral nor smooth-and rather similar between classes, especially in certain view configurations. The system uses the information obtained by observing internal state transitions when the camera is moved or when the feature detector scale is changed. A simulation of the agent and the environment is used for experimental measures of the model performances.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.1996.517050</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof PROC IEEE COMPUT SOC CONF COMPUT VISION PATTERN RECOGNIT, 1996, p.35-40
issn 1063-6919
1063-6919
language eng
recordid cdi_ieee_primary_517050
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Autonomous agents
Cameras
Control systems
Delay
Differential equations
Mobile robots
Process control
Random variables
Robot vision systems
Stochastic systems
title Recognizing 3D objects by generating random actions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognizing%203D%20objects%20by%20generating%20random%20actions&rft.btitle=PROC%20IEEE%20COMPUT%20SOC%20CONF%20COMPUT%20VISION%20PATTERN%20RECOGNIT&rft.au=Herbin,%20S.&rft.date=1996&rft.spage=35&rft.epage=40&rft.pages=35-40&rft.issn=1063-6919&rft.eissn=1063-6919&rft.isbn=9780818672590&rft.isbn_list=0818672595&rft_id=info:doi/10.1109/CVPR.1996.517050&rft_dat=%3Cproquest_6IE%3E26351116%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26351116&rft_id=info:pmid/&rft_ieee_id=517050&rfr_iscdi=true