Medium-high correlated Weibull-distributed clutter reduction by neural networks in coherent radar systems

This paper presents a clutter reduction system when medium-high correlated Weibull-distributed clutter governs the environment of a coherent radar system. This proposal is based on the capabilities of learning of some artificial intelligence techniques, such as the neural networks. This capability o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vicen-Bueno, R, Rosa-Zurera, M, Jarabo-Amores, M P, Mata-Moya, D
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 851
container_issue
container_start_page 846
container_title
container_volume
creator Vicen-Bueno, R
Rosa-Zurera, M
Jarabo-Amores, M P
Mata-Moya, D
description This paper presents a clutter reduction system when medium-high correlated Weibull-distributed clutter governs the environment of a coherent radar system. This proposal is based on the capabilities of learning of some artificial intelligence techniques, such as the neural networks. This capability of learning of the neural networks is used to learn some statistical characteristics of the radar environment. The results obtained with this proposal show how the desired signals (targets) are emphasized with respect to the environmental interference (clutter), which is reduced. Moreover, several advantages are found if it is compared with other classical approaches to reduce the clutter level, such as Target Sequence Known A Priori techniques.
doi_str_mv 10.1109/IMTC.2009.5168568
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5168568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5168568</ieee_id><sourcerecordid>5168568</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5dc2cc7c9e4989ff2b1d9687ef83406ea1a9318662fd969eae443b920ce5e2ac3</originalsourceid><addsrcrecordid>eNpVUEtLxDAYjKjguu4PEC_5A13zaNLkKMXHwi5eCh6XNPlqo31IkiL991bci6d5wAzMIHRLyZZSou93h6rcMkL0VlCphFRnaKMLRXOW55wLXpz_04xcoNWSo5lgil6h6xg_CCEyL4oV8gdwfuqz1r-32I4hQGcSOPwGvp66LnM-prDQX892U0oQcAA32eTHAdczHmAKplsgfY_hM2I_LDUtBBgSDsaZgOMcE_TxBl02pouwOeEaVU-PVfmS7V-fd-XDPvOapEw4y6wtrIZcK900rKZOS1VAo3hOJBhqNKdKStYsvgYDy8ZaM2JBADOWr9HdX60HgONX8L0J8_F0FP8BK8JdBw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Medium-high correlated Weibull-distributed clutter reduction by neural networks in coherent radar systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vicen-Bueno, R ; Rosa-Zurera, M ; Jarabo-Amores, M P ; Mata-Moya, D</creator><creatorcontrib>Vicen-Bueno, R ; Rosa-Zurera, M ; Jarabo-Amores, M P ; Mata-Moya, D</creatorcontrib><description>This paper presents a clutter reduction system when medium-high correlated Weibull-distributed clutter governs the environment of a coherent radar system. This proposal is based on the capabilities of learning of some artificial intelligence techniques, such as the neural networks. This capability of learning of the neural networks is used to learn some statistical characteristics of the radar environment. The results obtained with this proposal show how the desired signals (targets) are emphasized with respect to the environmental interference (clutter), which is reduced. Moreover, several advantages are found if it is compared with other classical approaches to reduce the clutter level, such as Target Sequence Known A Priori techniques.</description><identifier>ISSN: 1091-5281</identifier><identifier>ISBN: 9781424433520</identifier><identifier>ISBN: 1424433525</identifier><identifier>EISBN: 9781424433537</identifier><identifier>EISBN: 1424433533</identifier><identifier>DOI: 10.1109/IMTC.2009.5168568</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Instrumentation and measurement ; Learning ; Neural networks ; Proposals ; Radar applications ; Radar clutter ; Radar detection ; Statistical distributions</subject><ispartof>2009 IEEE Instrumentation and Measurement Technology Conference, 2009, p.846-851</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5168568$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5168568$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vicen-Bueno, R</creatorcontrib><creatorcontrib>Rosa-Zurera, M</creatorcontrib><creatorcontrib>Jarabo-Amores, M P</creatorcontrib><creatorcontrib>Mata-Moya, D</creatorcontrib><title>Medium-high correlated Weibull-distributed clutter reduction by neural networks in coherent radar systems</title><title>2009 IEEE Instrumentation and Measurement Technology Conference</title><addtitle>IMTC</addtitle><description>This paper presents a clutter reduction system when medium-high correlated Weibull-distributed clutter governs the environment of a coherent radar system. This proposal is based on the capabilities of learning of some artificial intelligence techniques, such as the neural networks. This capability of learning of the neural networks is used to learn some statistical characteristics of the radar environment. The results obtained with this proposal show how the desired signals (targets) are emphasized with respect to the environmental interference (clutter), which is reduced. Moreover, several advantages are found if it is compared with other classical approaches to reduce the clutter level, such as Target Sequence Known A Priori techniques.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Instrumentation and measurement</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Proposals</subject><subject>Radar applications</subject><subject>Radar clutter</subject><subject>Radar detection</subject><subject>Statistical distributions</subject><issn>1091-5281</issn><isbn>9781424433520</isbn><isbn>1424433525</isbn><isbn>9781424433537</isbn><isbn>1424433533</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUEtLxDAYjKjguu4PEC_5A13zaNLkKMXHwi5eCh6XNPlqo31IkiL991bci6d5wAzMIHRLyZZSou93h6rcMkL0VlCphFRnaKMLRXOW55wLXpz_04xcoNWSo5lgil6h6xg_CCEyL4oV8gdwfuqz1r-32I4hQGcSOPwGvp66LnM-prDQX892U0oQcAA32eTHAdczHmAKplsgfY_hM2I_LDUtBBgSDsaZgOMcE_TxBl02pouwOeEaVU-PVfmS7V-fd-XDPvOapEw4y6wtrIZcK900rKZOS1VAo3hOJBhqNKdKStYsvgYDy8ZaM2JBADOWr9HdX60HgONX8L0J8_F0FP8BK8JdBw</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Vicen-Bueno, R</creator><creator>Rosa-Zurera, M</creator><creator>Jarabo-Amores, M P</creator><creator>Mata-Moya, D</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200905</creationdate><title>Medium-high correlated Weibull-distributed clutter reduction by neural networks in coherent radar systems</title><author>Vicen-Bueno, R ; Rosa-Zurera, M ; Jarabo-Amores, M P ; Mata-Moya, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5dc2cc7c9e4989ff2b1d9687ef83406ea1a9318662fd969eae443b920ce5e2ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Instrumentation and measurement</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Proposals</topic><topic>Radar applications</topic><topic>Radar clutter</topic><topic>Radar detection</topic><topic>Statistical distributions</topic><toplevel>online_resources</toplevel><creatorcontrib>Vicen-Bueno, R</creatorcontrib><creatorcontrib>Rosa-Zurera, M</creatorcontrib><creatorcontrib>Jarabo-Amores, M P</creatorcontrib><creatorcontrib>Mata-Moya, D</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vicen-Bueno, R</au><au>Rosa-Zurera, M</au><au>Jarabo-Amores, M P</au><au>Mata-Moya, D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Medium-high correlated Weibull-distributed clutter reduction by neural networks in coherent radar systems</atitle><btitle>2009 IEEE Instrumentation and Measurement Technology Conference</btitle><stitle>IMTC</stitle><date>2009-05</date><risdate>2009</risdate><spage>846</spage><epage>851</epage><pages>846-851</pages><issn>1091-5281</issn><isbn>9781424433520</isbn><isbn>1424433525</isbn><eisbn>9781424433537</eisbn><eisbn>1424433533</eisbn><abstract>This paper presents a clutter reduction system when medium-high correlated Weibull-distributed clutter governs the environment of a coherent radar system. This proposal is based on the capabilities of learning of some artificial intelligence techniques, such as the neural networks. This capability of learning of the neural networks is used to learn some statistical characteristics of the radar environment. The results obtained with this proposal show how the desired signals (targets) are emphasized with respect to the environmental interference (clutter), which is reduced. Moreover, several advantages are found if it is compared with other classical approaches to reduce the clutter level, such as Target Sequence Known A Priori techniques.</abstract><pub>IEEE</pub><doi>10.1109/IMTC.2009.5168568</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1091-5281
ispartof 2009 IEEE Instrumentation and Measurement Technology Conference, 2009, p.846-851
issn 1091-5281
language eng
recordid cdi_ieee_primary_5168568
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Artificial neural networks
Instrumentation and measurement
Learning
Neural networks
Proposals
Radar applications
Radar clutter
Radar detection
Statistical distributions
title Medium-high correlated Weibull-distributed clutter reduction by neural networks in coherent radar systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T15%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Medium-high%20correlated%20Weibull-distributed%20clutter%20reduction%20by%20neural%20networks%20in%20coherent%20radar%20systems&rft.btitle=2009%20IEEE%20Instrumentation%20and%20Measurement%20Technology%20Conference&rft.au=Vicen-Bueno,%20R&rft.date=2009-05&rft.spage=846&rft.epage=851&rft.pages=846-851&rft.issn=1091-5281&rft.isbn=9781424433520&rft.isbn_list=1424433525&rft_id=info:doi/10.1109/IMTC.2009.5168568&rft_dat=%3Cieee_6IE%3E5168568%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424433537&rft.eisbn_list=1424433533&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5168568&rfr_iscdi=true