Medium-high correlated Weibull-distributed clutter reduction by neural networks in coherent radar systems
This paper presents a clutter reduction system when medium-high correlated Weibull-distributed clutter governs the environment of a coherent radar system. This proposal is based on the capabilities of learning of some artificial intelligence techniques, such as the neural networks. This capability o...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 851 |
---|---|
container_issue | |
container_start_page | 846 |
container_title | |
container_volume | |
creator | Vicen-Bueno, R Rosa-Zurera, M Jarabo-Amores, M P Mata-Moya, D |
description | This paper presents a clutter reduction system when medium-high correlated Weibull-distributed clutter governs the environment of a coherent radar system. This proposal is based on the capabilities of learning of some artificial intelligence techniques, such as the neural networks. This capability of learning of the neural networks is used to learn some statistical characteristics of the radar environment. The results obtained with this proposal show how the desired signals (targets) are emphasized with respect to the environmental interference (clutter), which is reduced. Moreover, several advantages are found if it is compared with other classical approaches to reduce the clutter level, such as Target Sequence Known A Priori techniques. |
doi_str_mv | 10.1109/IMTC.2009.5168568 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5168568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5168568</ieee_id><sourcerecordid>5168568</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5dc2cc7c9e4989ff2b1d9687ef83406ea1a9318662fd969eae443b920ce5e2ac3</originalsourceid><addsrcrecordid>eNpVUEtLxDAYjKjguu4PEC_5A13zaNLkKMXHwi5eCh6XNPlqo31IkiL991bci6d5wAzMIHRLyZZSou93h6rcMkL0VlCphFRnaKMLRXOW55wLXpz_04xcoNWSo5lgil6h6xg_CCEyL4oV8gdwfuqz1r-32I4hQGcSOPwGvp66LnM-prDQX892U0oQcAA32eTHAdczHmAKplsgfY_hM2I_LDUtBBgSDsaZgOMcE_TxBl02pouwOeEaVU-PVfmS7V-fd-XDPvOapEw4y6wtrIZcK900rKZOS1VAo3hOJBhqNKdKStYsvgYDy8ZaM2JBADOWr9HdX60HgONX8L0J8_F0FP8BK8JdBw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Medium-high correlated Weibull-distributed clutter reduction by neural networks in coherent radar systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vicen-Bueno, R ; Rosa-Zurera, M ; Jarabo-Amores, M P ; Mata-Moya, D</creator><creatorcontrib>Vicen-Bueno, R ; Rosa-Zurera, M ; Jarabo-Amores, M P ; Mata-Moya, D</creatorcontrib><description>This paper presents a clutter reduction system when medium-high correlated Weibull-distributed clutter governs the environment of a coherent radar system. This proposal is based on the capabilities of learning of some artificial intelligence techniques, such as the neural networks. This capability of learning of the neural networks is used to learn some statistical characteristics of the radar environment. The results obtained with this proposal show how the desired signals (targets) are emphasized with respect to the environmental interference (clutter), which is reduced. Moreover, several advantages are found if it is compared with other classical approaches to reduce the clutter level, such as Target Sequence Known A Priori techniques.</description><identifier>ISSN: 1091-5281</identifier><identifier>ISBN: 9781424433520</identifier><identifier>ISBN: 1424433525</identifier><identifier>EISBN: 9781424433537</identifier><identifier>EISBN: 1424433533</identifier><identifier>DOI: 10.1109/IMTC.2009.5168568</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Instrumentation and measurement ; Learning ; Neural networks ; Proposals ; Radar applications ; Radar clutter ; Radar detection ; Statistical distributions</subject><ispartof>2009 IEEE Instrumentation and Measurement Technology Conference, 2009, p.846-851</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5168568$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5168568$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vicen-Bueno, R</creatorcontrib><creatorcontrib>Rosa-Zurera, M</creatorcontrib><creatorcontrib>Jarabo-Amores, M P</creatorcontrib><creatorcontrib>Mata-Moya, D</creatorcontrib><title>Medium-high correlated Weibull-distributed clutter reduction by neural networks in coherent radar systems</title><title>2009 IEEE Instrumentation and Measurement Technology Conference</title><addtitle>IMTC</addtitle><description>This paper presents a clutter reduction system when medium-high correlated Weibull-distributed clutter governs the environment of a coherent radar system. This proposal is based on the capabilities of learning of some artificial intelligence techniques, such as the neural networks. This capability of learning of the neural networks is used to learn some statistical characteristics of the radar environment. The results obtained with this proposal show how the desired signals (targets) are emphasized with respect to the environmental interference (clutter), which is reduced. Moreover, several advantages are found if it is compared with other classical approaches to reduce the clutter level, such as Target Sequence Known A Priori techniques.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Instrumentation and measurement</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Proposals</subject><subject>Radar applications</subject><subject>Radar clutter</subject><subject>Radar detection</subject><subject>Statistical distributions</subject><issn>1091-5281</issn><isbn>9781424433520</isbn><isbn>1424433525</isbn><isbn>9781424433537</isbn><isbn>1424433533</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUEtLxDAYjKjguu4PEC_5A13zaNLkKMXHwi5eCh6XNPlqo31IkiL991bci6d5wAzMIHRLyZZSou93h6rcMkL0VlCphFRnaKMLRXOW55wLXpz_04xcoNWSo5lgil6h6xg_CCEyL4oV8gdwfuqz1r-32I4hQGcSOPwGvp66LnM-prDQX892U0oQcAA32eTHAdczHmAKplsgfY_hM2I_LDUtBBgSDsaZgOMcE_TxBl02pouwOeEaVU-PVfmS7V-fd-XDPvOapEw4y6wtrIZcK900rKZOS1VAo3hOJBhqNKdKStYsvgYDy8ZaM2JBADOWr9HdX60HgONX8L0J8_F0FP8BK8JdBw</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Vicen-Bueno, R</creator><creator>Rosa-Zurera, M</creator><creator>Jarabo-Amores, M P</creator><creator>Mata-Moya, D</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200905</creationdate><title>Medium-high correlated Weibull-distributed clutter reduction by neural networks in coherent radar systems</title><author>Vicen-Bueno, R ; Rosa-Zurera, M ; Jarabo-Amores, M P ; Mata-Moya, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5dc2cc7c9e4989ff2b1d9687ef83406ea1a9318662fd969eae443b920ce5e2ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Instrumentation and measurement</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Proposals</topic><topic>Radar applications</topic><topic>Radar clutter</topic><topic>Radar detection</topic><topic>Statistical distributions</topic><toplevel>online_resources</toplevel><creatorcontrib>Vicen-Bueno, R</creatorcontrib><creatorcontrib>Rosa-Zurera, M</creatorcontrib><creatorcontrib>Jarabo-Amores, M P</creatorcontrib><creatorcontrib>Mata-Moya, D</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vicen-Bueno, R</au><au>Rosa-Zurera, M</au><au>Jarabo-Amores, M P</au><au>Mata-Moya, D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Medium-high correlated Weibull-distributed clutter reduction by neural networks in coherent radar systems</atitle><btitle>2009 IEEE Instrumentation and Measurement Technology Conference</btitle><stitle>IMTC</stitle><date>2009-05</date><risdate>2009</risdate><spage>846</spage><epage>851</epage><pages>846-851</pages><issn>1091-5281</issn><isbn>9781424433520</isbn><isbn>1424433525</isbn><eisbn>9781424433537</eisbn><eisbn>1424433533</eisbn><abstract>This paper presents a clutter reduction system when medium-high correlated Weibull-distributed clutter governs the environment of a coherent radar system. This proposal is based on the capabilities of learning of some artificial intelligence techniques, such as the neural networks. This capability of learning of the neural networks is used to learn some statistical characteristics of the radar environment. The results obtained with this proposal show how the desired signals (targets) are emphasized with respect to the environmental interference (clutter), which is reduced. Moreover, several advantages are found if it is compared with other classical approaches to reduce the clutter level, such as Target Sequence Known A Priori techniques.</abstract><pub>IEEE</pub><doi>10.1109/IMTC.2009.5168568</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1091-5281 |
ispartof | 2009 IEEE Instrumentation and Measurement Technology Conference, 2009, p.846-851 |
issn | 1091-5281 |
language | eng |
recordid | cdi_ieee_primary_5168568 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Artificial neural networks Instrumentation and measurement Learning Neural networks Proposals Radar applications Radar clutter Radar detection Statistical distributions |
title | Medium-high correlated Weibull-distributed clutter reduction by neural networks in coherent radar systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T15%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Medium-high%20correlated%20Weibull-distributed%20clutter%20reduction%20by%20neural%20networks%20in%20coherent%20radar%20systems&rft.btitle=2009%20IEEE%20Instrumentation%20and%20Measurement%20Technology%20Conference&rft.au=Vicen-Bueno,%20R&rft.date=2009-05&rft.spage=846&rft.epage=851&rft.pages=846-851&rft.issn=1091-5281&rft.isbn=9781424433520&rft.isbn_list=1424433525&rft_id=info:doi/10.1109/IMTC.2009.5168568&rft_dat=%3Cieee_6IE%3E5168568%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424433537&rft.eisbn_list=1424433533&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5168568&rfr_iscdi=true |