Benefits of higher order elements for electrostatic simulations of large-scale 3D insulator structures

In finite element method (FEM) simulations of electrostatic fields of large-scale 3D insulator structures, second order elements are used instead of linear elements while maintaining mesh and simulation parameters. Additional nodes on the edges of the elements are adapted to more accurately reflect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Weida, D., Steinmetz, T., Clemens, M., Stefanini, D., Seifert, J.-M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 561
container_issue
container_start_page 558
container_title
container_volume
creator Weida, D.
Steinmetz, T.
Clemens, M.
Stefanini, D.
Seifert, J.-M.
description In finite element method (FEM) simulations of electrostatic fields of large-scale 3D insulator structures, second order elements are used instead of linear elements while maintaining mesh and simulation parameters. Additional nodes on the edges of the elements are adapted to more accurately reflect surface geometry. This results in a more accurate approximation through curvilinear higher order elements. In order to validate this approach, a simplified geometry with a known analytic solution is employed. Furthermore, simulation results of a large-scale 3D insulator structure with several million degrees of freedom are presented herein.
doi_str_mv 10.1109/EIC.2009.5166408
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5166408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5166408</ieee_id><sourcerecordid>5166408</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f90087e81bcc8034e35df597b4e6bcaef349eb408f5de1d784fbfe9bbc7aa9f33</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc2jEm3pHolNfiDBju04XkIoUKkSG1hXtjNujfJAtrPg73FLJTbz0NG9mrkI3RFcEILlw3rTFCXGsuCkqhiuL9CCsJIxKongl2heclHllZDk6h9weZ0ApSzHUvAZWhwNJMaCshu0CuELY0wETX5kjuwTDGBdDNlos4PbH8Bno29ThQ56GBKw42kx0Y8hquhMFlw_dWkah5OsU34PeTCqg4w-Z24IR5pUIfrJxMlDuEUzq7oAq3Nfos-X9Ufzlm_fXzfN4zZ36Z-Y23RmLaAm2pgaUwaUt5ZLoRlU2iiwlEnQKQfLWyCtqJnVFqTWRiglLaVLdP_n6wBg9-1dr_zP7hwe_QXnMF9k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Benefits of higher order elements for electrostatic simulations of large-scale 3D insulator structures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Weida, D. ; Steinmetz, T. ; Clemens, M. ; Stefanini, D. ; Seifert, J.-M.</creator><creatorcontrib>Weida, D. ; Steinmetz, T. ; Clemens, M. ; Stefanini, D. ; Seifert, J.-M.</creatorcontrib><description>In finite element method (FEM) simulations of electrostatic fields of large-scale 3D insulator structures, second order elements are used instead of linear elements while maintaining mesh and simulation parameters. Additional nodes on the edges of the elements are adapted to more accurately reflect surface geometry. This results in a more accurate approximation through curvilinear higher order elements. In order to validate this approach, a simplified geometry with a known analytic solution is employed. Furthermore, simulation results of a large-scale 3D insulator structure with several million degrees of freedom are presented herein.</description><identifier>ISSN: 2334-0975</identifier><identifier>ISBN: 1424439159</identifier><identifier>ISBN: 9781424439157</identifier><identifier>EISSN: 2576-6791</identifier><identifier>EISBN: 1424439175</identifier><identifier>EISBN: 9781424439171</identifier><identifier>DOI: 10.1109/EIC.2009.5166408</identifier><identifier>LCCN: 2009900734</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Dielectrics and electrical insulation ; Electrostatics ; Geometry ; Jacobian matrices ; Large-scale systems ; Solid modeling ; Stress ; Voltage</subject><ispartof>2009 IEEE Electrical Insulation Conference, 2009, p.558-561</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5166408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5166408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Weida, D.</creatorcontrib><creatorcontrib>Steinmetz, T.</creatorcontrib><creatorcontrib>Clemens, M.</creatorcontrib><creatorcontrib>Stefanini, D.</creatorcontrib><creatorcontrib>Seifert, J.-M.</creatorcontrib><title>Benefits of higher order elements for electrostatic simulations of large-scale 3D insulator structures</title><title>2009 IEEE Electrical Insulation Conference</title><addtitle>EIC</addtitle><description>In finite element method (FEM) simulations of electrostatic fields of large-scale 3D insulator structures, second order elements are used instead of linear elements while maintaining mesh and simulation parameters. Additional nodes on the edges of the elements are adapted to more accurately reflect surface geometry. This results in a more accurate approximation through curvilinear higher order elements. In order to validate this approach, a simplified geometry with a known analytic solution is employed. Furthermore, simulation results of a large-scale 3D insulator structure with several million degrees of freedom are presented herein.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Dielectrics and electrical insulation</subject><subject>Electrostatics</subject><subject>Geometry</subject><subject>Jacobian matrices</subject><subject>Large-scale systems</subject><subject>Solid modeling</subject><subject>Stress</subject><subject>Voltage</subject><issn>2334-0975</issn><issn>2576-6791</issn><isbn>1424439159</isbn><isbn>9781424439157</isbn><isbn>1424439175</isbn><isbn>9781424439171</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQRc2jEm3pHolNfiDBju04XkIoUKkSG1hXtjNujfJAtrPg73FLJTbz0NG9mrkI3RFcEILlw3rTFCXGsuCkqhiuL9CCsJIxKongl2heclHllZDk6h9weZ0ApSzHUvAZWhwNJMaCshu0CuELY0wETX5kjuwTDGBdDNlos4PbH8Bno29ThQ56GBKw42kx0Y8hquhMFlw_dWkah5OsU34PeTCqg4w-Z24IR5pUIfrJxMlDuEUzq7oAq3Nfos-X9Ufzlm_fXzfN4zZ36Z-Y23RmLaAm2pgaUwaUt5ZLoRlU2iiwlEnQKQfLWyCtqJnVFqTWRiglLaVLdP_n6wBg9-1dr_zP7hwe_QXnMF9k</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Weida, D.</creator><creator>Steinmetz, T.</creator><creator>Clemens, M.</creator><creator>Stefanini, D.</creator><creator>Seifert, J.-M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200905</creationdate><title>Benefits of higher order elements for electrostatic simulations of large-scale 3D insulator structures</title><author>Weida, D. ; Steinmetz, T. ; Clemens, M. ; Stefanini, D. ; Seifert, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f90087e81bcc8034e35df597b4e6bcaef349eb408f5de1d784fbfe9bbc7aa9f33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Dielectrics and electrical insulation</topic><topic>Electrostatics</topic><topic>Geometry</topic><topic>Jacobian matrices</topic><topic>Large-scale systems</topic><topic>Solid modeling</topic><topic>Stress</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Weida, D.</creatorcontrib><creatorcontrib>Steinmetz, T.</creatorcontrib><creatorcontrib>Clemens, M.</creatorcontrib><creatorcontrib>Stefanini, D.</creatorcontrib><creatorcontrib>Seifert, J.-M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weida, D.</au><au>Steinmetz, T.</au><au>Clemens, M.</au><au>Stefanini, D.</au><au>Seifert, J.-M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Benefits of higher order elements for electrostatic simulations of large-scale 3D insulator structures</atitle><btitle>2009 IEEE Electrical Insulation Conference</btitle><stitle>EIC</stitle><date>2009-05</date><risdate>2009</risdate><spage>558</spage><epage>561</epage><pages>558-561</pages><issn>2334-0975</issn><eissn>2576-6791</eissn><isbn>1424439159</isbn><isbn>9781424439157</isbn><eisbn>1424439175</eisbn><eisbn>9781424439171</eisbn><abstract>In finite element method (FEM) simulations of electrostatic fields of large-scale 3D insulator structures, second order elements are used instead of linear elements while maintaining mesh and simulation parameters. Additional nodes on the edges of the elements are adapted to more accurately reflect surface geometry. This results in a more accurate approximation through curvilinear higher order elements. In order to validate this approach, a simplified geometry with a known analytic solution is employed. Furthermore, simulation results of a large-scale 3D insulator structure with several million degrees of freedom are presented herein.</abstract><pub>IEEE</pub><doi>10.1109/EIC.2009.5166408</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2334-0975
ispartof 2009 IEEE Electrical Insulation Conference, 2009, p.558-561
issn 2334-0975
2576-6791
language eng
recordid cdi_ieee_primary_5166408
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Computational modeling
Dielectrics and electrical insulation
Electrostatics
Geometry
Jacobian matrices
Large-scale systems
Solid modeling
Stress
Voltage
title Benefits of higher order elements for electrostatic simulations of large-scale 3D insulator structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Benefits%20of%20higher%20order%20elements%20for%20electrostatic%20simulations%20of%20large-scale%203D%20insulator%20structures&rft.btitle=2009%20IEEE%20Electrical%20Insulation%20Conference&rft.au=Weida,%20D.&rft.date=2009-05&rft.spage=558&rft.epage=561&rft.pages=558-561&rft.issn=2334-0975&rft.eissn=2576-6791&rft.isbn=1424439159&rft.isbn_list=9781424439157&rft_id=info:doi/10.1109/EIC.2009.5166408&rft_dat=%3Cieee_6IE%3E5166408%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424439175&rft.eisbn_list=9781424439171&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5166408&rfr_iscdi=true