Benefits of higher order elements for electrostatic simulations of large-scale 3D insulator structures
In finite element method (FEM) simulations of electrostatic fields of large-scale 3D insulator structures, second order elements are used instead of linear elements while maintaining mesh and simulation parameters. Additional nodes on the edges of the elements are adapted to more accurately reflect...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 561 |
---|---|
container_issue | |
container_start_page | 558 |
container_title | |
container_volume | |
creator | Weida, D. Steinmetz, T. Clemens, M. Stefanini, D. Seifert, J.-M. |
description | In finite element method (FEM) simulations of electrostatic fields of large-scale 3D insulator structures, second order elements are used instead of linear elements while maintaining mesh and simulation parameters. Additional nodes on the edges of the elements are adapted to more accurately reflect surface geometry. This results in a more accurate approximation through curvilinear higher order elements. In order to validate this approach, a simplified geometry with a known analytic solution is employed. Furthermore, simulation results of a large-scale 3D insulator structure with several million degrees of freedom are presented herein. |
doi_str_mv | 10.1109/EIC.2009.5166408 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5166408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5166408</ieee_id><sourcerecordid>5166408</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f90087e81bcc8034e35df597b4e6bcaef349eb408f5de1d784fbfe9bbc7aa9f33</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc2jEm3pHolNfiDBju04XkIoUKkSG1hXtjNujfJAtrPg73FLJTbz0NG9mrkI3RFcEILlw3rTFCXGsuCkqhiuL9CCsJIxKongl2heclHllZDk6h9weZ0ApSzHUvAZWhwNJMaCshu0CuELY0wETX5kjuwTDGBdDNlos4PbH8Bno29ThQ56GBKw42kx0Y8hquhMFlw_dWkah5OsU34PeTCqg4w-Z24IR5pUIfrJxMlDuEUzq7oAq3Nfos-X9Ufzlm_fXzfN4zZ36Z-Y23RmLaAm2pgaUwaUt5ZLoRlU2iiwlEnQKQfLWyCtqJnVFqTWRiglLaVLdP_n6wBg9-1dr_zP7hwe_QXnMF9k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Benefits of higher order elements for electrostatic simulations of large-scale 3D insulator structures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Weida, D. ; Steinmetz, T. ; Clemens, M. ; Stefanini, D. ; Seifert, J.-M.</creator><creatorcontrib>Weida, D. ; Steinmetz, T. ; Clemens, M. ; Stefanini, D. ; Seifert, J.-M.</creatorcontrib><description>In finite element method (FEM) simulations of electrostatic fields of large-scale 3D insulator structures, second order elements are used instead of linear elements while maintaining mesh and simulation parameters. Additional nodes on the edges of the elements are adapted to more accurately reflect surface geometry. This results in a more accurate approximation through curvilinear higher order elements. In order to validate this approach, a simplified geometry with a known analytic solution is employed. Furthermore, simulation results of a large-scale 3D insulator structure with several million degrees of freedom are presented herein.</description><identifier>ISSN: 2334-0975</identifier><identifier>ISBN: 1424439159</identifier><identifier>ISBN: 9781424439157</identifier><identifier>EISSN: 2576-6791</identifier><identifier>EISBN: 1424439175</identifier><identifier>EISBN: 9781424439171</identifier><identifier>DOI: 10.1109/EIC.2009.5166408</identifier><identifier>LCCN: 2009900734</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Dielectrics and electrical insulation ; Electrostatics ; Geometry ; Jacobian matrices ; Large-scale systems ; Solid modeling ; Stress ; Voltage</subject><ispartof>2009 IEEE Electrical Insulation Conference, 2009, p.558-561</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5166408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5166408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Weida, D.</creatorcontrib><creatorcontrib>Steinmetz, T.</creatorcontrib><creatorcontrib>Clemens, M.</creatorcontrib><creatorcontrib>Stefanini, D.</creatorcontrib><creatorcontrib>Seifert, J.-M.</creatorcontrib><title>Benefits of higher order elements for electrostatic simulations of large-scale 3D insulator structures</title><title>2009 IEEE Electrical Insulation Conference</title><addtitle>EIC</addtitle><description>In finite element method (FEM) simulations of electrostatic fields of large-scale 3D insulator structures, second order elements are used instead of linear elements while maintaining mesh and simulation parameters. Additional nodes on the edges of the elements are adapted to more accurately reflect surface geometry. This results in a more accurate approximation through curvilinear higher order elements. In order to validate this approach, a simplified geometry with a known analytic solution is employed. Furthermore, simulation results of a large-scale 3D insulator structure with several million degrees of freedom are presented herein.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Dielectrics and electrical insulation</subject><subject>Electrostatics</subject><subject>Geometry</subject><subject>Jacobian matrices</subject><subject>Large-scale systems</subject><subject>Solid modeling</subject><subject>Stress</subject><subject>Voltage</subject><issn>2334-0975</issn><issn>2576-6791</issn><isbn>1424439159</isbn><isbn>9781424439157</isbn><isbn>1424439175</isbn><isbn>9781424439171</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQRc2jEm3pHolNfiDBju04XkIoUKkSG1hXtjNujfJAtrPg73FLJTbz0NG9mrkI3RFcEILlw3rTFCXGsuCkqhiuL9CCsJIxKongl2heclHllZDk6h9weZ0ApSzHUvAZWhwNJMaCshu0CuELY0wETX5kjuwTDGBdDNlos4PbH8Bno29ThQ56GBKw42kx0Y8hquhMFlw_dWkah5OsU34PeTCqg4w-Z24IR5pUIfrJxMlDuEUzq7oAq3Nfos-X9Ufzlm_fXzfN4zZ36Z-Y23RmLaAm2pgaUwaUt5ZLoRlU2iiwlEnQKQfLWyCtqJnVFqTWRiglLaVLdP_n6wBg9-1dr_zP7hwe_QXnMF9k</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Weida, D.</creator><creator>Steinmetz, T.</creator><creator>Clemens, M.</creator><creator>Stefanini, D.</creator><creator>Seifert, J.-M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200905</creationdate><title>Benefits of higher order elements for electrostatic simulations of large-scale 3D insulator structures</title><author>Weida, D. ; Steinmetz, T. ; Clemens, M. ; Stefanini, D. ; Seifert, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f90087e81bcc8034e35df597b4e6bcaef349eb408f5de1d784fbfe9bbc7aa9f33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Dielectrics and electrical insulation</topic><topic>Electrostatics</topic><topic>Geometry</topic><topic>Jacobian matrices</topic><topic>Large-scale systems</topic><topic>Solid modeling</topic><topic>Stress</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Weida, D.</creatorcontrib><creatorcontrib>Steinmetz, T.</creatorcontrib><creatorcontrib>Clemens, M.</creatorcontrib><creatorcontrib>Stefanini, D.</creatorcontrib><creatorcontrib>Seifert, J.-M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weida, D.</au><au>Steinmetz, T.</au><au>Clemens, M.</au><au>Stefanini, D.</au><au>Seifert, J.-M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Benefits of higher order elements for electrostatic simulations of large-scale 3D insulator structures</atitle><btitle>2009 IEEE Electrical Insulation Conference</btitle><stitle>EIC</stitle><date>2009-05</date><risdate>2009</risdate><spage>558</spage><epage>561</epage><pages>558-561</pages><issn>2334-0975</issn><eissn>2576-6791</eissn><isbn>1424439159</isbn><isbn>9781424439157</isbn><eisbn>1424439175</eisbn><eisbn>9781424439171</eisbn><abstract>In finite element method (FEM) simulations of electrostatic fields of large-scale 3D insulator structures, second order elements are used instead of linear elements while maintaining mesh and simulation parameters. Additional nodes on the edges of the elements are adapted to more accurately reflect surface geometry. This results in a more accurate approximation through curvilinear higher order elements. In order to validate this approach, a simplified geometry with a known analytic solution is employed. Furthermore, simulation results of a large-scale 3D insulator structure with several million degrees of freedom are presented herein.</abstract><pub>IEEE</pub><doi>10.1109/EIC.2009.5166408</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2334-0975 |
ispartof | 2009 IEEE Electrical Insulation Conference, 2009, p.558-561 |
issn | 2334-0975 2576-6791 |
language | eng |
recordid | cdi_ieee_primary_5166408 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Computational modeling Dielectrics and electrical insulation Electrostatics Geometry Jacobian matrices Large-scale systems Solid modeling Stress Voltage |
title | Benefits of higher order elements for electrostatic simulations of large-scale 3D insulator structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Benefits%20of%20higher%20order%20elements%20for%20electrostatic%20simulations%20of%20large-scale%203D%20insulator%20structures&rft.btitle=2009%20IEEE%20Electrical%20Insulation%20Conference&rft.au=Weida,%20D.&rft.date=2009-05&rft.spage=558&rft.epage=561&rft.pages=558-561&rft.issn=2334-0975&rft.eissn=2576-6791&rft.isbn=1424439159&rft.isbn_list=9781424439157&rft_id=info:doi/10.1109/EIC.2009.5166408&rft_dat=%3Cieee_6IE%3E5166408%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424439175&rft.eisbn_list=9781424439171&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5166408&rfr_iscdi=true |