Data-driven approach to predict survival of cancer patients
We develop a novel method to identify patients 'with different disease risk level. Our method estimates the optimal partition (cutoff) of a single gene's expression level by maximizing the separation of the survival curves related to the high- and low risk of the disease behavior. We exten...
Gespeichert in:
Veröffentlicht in: | Engineering in medicine & biology 2009-07, Vol.28 (4), p.58-66 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | 4 |
container_start_page | 58 |
container_title | Engineering in medicine & biology |
container_volume | 28 |
creator | Motakis, E. Ivshina, A. Kuznetsov, V. |
description | We develop a novel method to identify patients 'with different disease risk level. Our method estimates the optimal partition (cutoff) of a single gene's expression level by maximizing the separation of the survival curves related to the high- and low risk of the disease behavior. We extend our approach to construct two-gene signatures, which can exhibit synergetic influence on patient survival. Using bootstrapping and statistical modeling, we evaluate the performance of our method by analyzing Affymetrix U133 data sets of two large breast cancer patient cohorts. Using 232-grade signature genes associated with different aggressiveness of breast tumor, we reveal a large number of gene pairs, which provides pronounced synergetic effect on patient's survival time and identifies patients with low- and high-risk disease subtypes. The selected survival significant genes are strongly supported by gene ontology (GO) analysis and literature data. Specifically, for the first time, we demonstrate that cyclin A2 or cyclin A and protein tyrosine phosphatase T (CCNA2- PTPRT) and megalin (LRP2)-integrin alpha-7 (ITGA7) gene pairs can provide strong clinically significant interaction effects on the survival of breast cancer patients. Our technique has the potential to be a powerful tool for classification, prediction, and prognosis of cancer and other complex diseases. |
doi_str_mv | 10.1109/MEMB.2009.932937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5165226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5165226</ieee_id><sourcerecordid>2303295261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-52aa653652f5f53b9195cf9cd2c4380b217b7b5bc3835944e50536997160dd0e3</originalsourceid><addsrcrecordid>eNpdkD1PwzAURS0EoqWwI7FEDGwpz36xHYsJSvmQWrHAbDmOI1K1SbCTSvx7XAUxML3l3Kv7DiGXFOaUgrpdL9cPcwag5gqZQnlEpjSeNKO5OCZTkKhSTiWfkLMQNgA0yyQ_JROqBGMZE1Ny92h6k5a-3rsmMV3nW2M_k75NOu_K2vZJGPy-3ptt0laJNY11PulMX7umD-fkpDLb4C5-74x8PC3fFy_p6u35dXG_Si0C61POjBEcBWcVrzgWiipuK2VLZjPMoWBUFrLghcUcucoyxyHSSkkqoCzB4YzcjL1x3dfgQq93dbBuuzWNa4egUSDGeojg9T9w0w6-idt0znOJyGQeIRgh69sQvKt05-ud8d-agj5Y1Qer-mBVj1Zj5GqM1M65P5zT-BIT-AN4XG9D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858733278</pqid></control><display><type>article</type><title>Data-driven approach to predict survival of cancer patients</title><source>IEEE Electronic Library (IEL)</source><creator>Motakis, E. ; Ivshina, A. ; Kuznetsov, V.</creator><creatorcontrib>Motakis, E. ; Ivshina, A. ; Kuznetsov, V.</creatorcontrib><description>We develop a novel method to identify patients 'with different disease risk level. Our method estimates the optimal partition (cutoff) of a single gene's expression level by maximizing the separation of the survival curves related to the high- and low risk of the disease behavior. We extend our approach to construct two-gene signatures, which can exhibit synergetic influence on patient survival. Using bootstrapping and statistical modeling, we evaluate the performance of our method by analyzing Affymetrix U133 data sets of two large breast cancer patient cohorts. Using 232-grade signature genes associated with different aggressiveness of breast tumor, we reveal a large number of gene pairs, which provides pronounced synergetic effect on patient's survival time and identifies patients with low- and high-risk disease subtypes. The selected survival significant genes are strongly supported by gene ontology (GO) analysis and literature data. Specifically, for the first time, we demonstrate that cyclin A2 or cyclin A and protein tyrosine phosphatase T (CCNA2- PTPRT) and megalin (LRP2)-integrin alpha-7 (ITGA7) gene pairs can provide strong clinically significant interaction effects on the survival of breast cancer patients. Our technique has the potential to be a powerful tool for classification, prediction, and prognosis of cancer and other complex diseases.</description><identifier>ISSN: 0739-5175</identifier><identifier>ISSN: 0278-0054</identifier><identifier>EISSN: 1937-4186</identifier><identifier>DOI: 10.1109/MEMB.2009.932937</identifier><identifier>PMID: 19622426</identifier><identifier>CODEN: IEMBDE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bioinformatics ; Breast cancer ; Breast tumors ; Data analysis ; Disease ; Diseases ; Gene expression ; Hazards ; Medical treatment ; Neoplasms ; Performance analysis ; Proteins</subject><ispartof>Engineering in medicine & biology, 2009-07, Vol.28 (4), p.58-66</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-52aa653652f5f53b9195cf9cd2c4380b217b7b5bc3835944e50536997160dd0e3</citedby><cites>FETCH-LOGICAL-c302t-52aa653652f5f53b9195cf9cd2c4380b217b7b5bc3835944e50536997160dd0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5165226$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5165226$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Motakis, E.</creatorcontrib><creatorcontrib>Ivshina, A.</creatorcontrib><creatorcontrib>Kuznetsov, V.</creatorcontrib><title>Data-driven approach to predict survival of cancer patients</title><title>Engineering in medicine & biology</title><addtitle>EMB-M</addtitle><description>We develop a novel method to identify patients 'with different disease risk level. Our method estimates the optimal partition (cutoff) of a single gene's expression level by maximizing the separation of the survival curves related to the high- and low risk of the disease behavior. We extend our approach to construct two-gene signatures, which can exhibit synergetic influence on patient survival. Using bootstrapping and statistical modeling, we evaluate the performance of our method by analyzing Affymetrix U133 data sets of two large breast cancer patient cohorts. Using 232-grade signature genes associated with different aggressiveness of breast tumor, we reveal a large number of gene pairs, which provides pronounced synergetic effect on patient's survival time and identifies patients with low- and high-risk disease subtypes. The selected survival significant genes are strongly supported by gene ontology (GO) analysis and literature data. Specifically, for the first time, we demonstrate that cyclin A2 or cyclin A and protein tyrosine phosphatase T (CCNA2- PTPRT) and megalin (LRP2)-integrin alpha-7 (ITGA7) gene pairs can provide strong clinically significant interaction effects on the survival of breast cancer patients. Our technique has the potential to be a powerful tool for classification, prediction, and prognosis of cancer and other complex diseases.</description><subject>Bioinformatics</subject><subject>Breast cancer</subject><subject>Breast tumors</subject><subject>Data analysis</subject><subject>Disease</subject><subject>Diseases</subject><subject>Gene expression</subject><subject>Hazards</subject><subject>Medical treatment</subject><subject>Neoplasms</subject><subject>Performance analysis</subject><subject>Proteins</subject><issn>0739-5175</issn><issn>0278-0054</issn><issn>1937-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAURS0EoqWwI7FEDGwpz36xHYsJSvmQWrHAbDmOI1K1SbCTSvx7XAUxML3l3Kv7DiGXFOaUgrpdL9cPcwag5gqZQnlEpjSeNKO5OCZTkKhSTiWfkLMQNgA0yyQ_JROqBGMZE1Ny92h6k5a-3rsmMV3nW2M_k75NOu_K2vZJGPy-3ptt0laJNY11PulMX7umD-fkpDLb4C5-74x8PC3fFy_p6u35dXG_Si0C61POjBEcBWcVrzgWiipuK2VLZjPMoWBUFrLghcUcucoyxyHSSkkqoCzB4YzcjL1x3dfgQq93dbBuuzWNa4egUSDGeojg9T9w0w6-idt0znOJyGQeIRgh69sQvKt05-ud8d-agj5Y1Qer-mBVj1Zj5GqM1M65P5zT-BIT-AN4XG9D</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Motakis, E.</creator><creator>Ivshina, A.</creator><creator>Kuznetsov, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>200907</creationdate><title>Data-driven approach to predict survival of cancer patients</title><author>Motakis, E. ; Ivshina, A. ; Kuznetsov, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-52aa653652f5f53b9195cf9cd2c4380b217b7b5bc3835944e50536997160dd0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bioinformatics</topic><topic>Breast cancer</topic><topic>Breast tumors</topic><topic>Data analysis</topic><topic>Disease</topic><topic>Diseases</topic><topic>Gene expression</topic><topic>Hazards</topic><topic>Medical treatment</topic><topic>Neoplasms</topic><topic>Performance analysis</topic><topic>Proteins</topic><toplevel>online_resources</toplevel><creatorcontrib>Motakis, E.</creatorcontrib><creatorcontrib>Ivshina, A.</creatorcontrib><creatorcontrib>Kuznetsov, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Engineering in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Motakis, E.</au><au>Ivshina, A.</au><au>Kuznetsov, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven approach to predict survival of cancer patients</atitle><jtitle>Engineering in medicine & biology</jtitle><stitle>EMB-M</stitle><date>2009-07</date><risdate>2009</risdate><volume>28</volume><issue>4</issue><spage>58</spage><epage>66</epage><pages>58-66</pages><issn>0739-5175</issn><issn>0278-0054</issn><eissn>1937-4186</eissn><coden>IEMBDE</coden><abstract>We develop a novel method to identify patients 'with different disease risk level. Our method estimates the optimal partition (cutoff) of a single gene's expression level by maximizing the separation of the survival curves related to the high- and low risk of the disease behavior. We extend our approach to construct two-gene signatures, which can exhibit synergetic influence on patient survival. Using bootstrapping and statistical modeling, we evaluate the performance of our method by analyzing Affymetrix U133 data sets of two large breast cancer patient cohorts. Using 232-grade signature genes associated with different aggressiveness of breast tumor, we reveal a large number of gene pairs, which provides pronounced synergetic effect on patient's survival time and identifies patients with low- and high-risk disease subtypes. The selected survival significant genes are strongly supported by gene ontology (GO) analysis and literature data. Specifically, for the first time, we demonstrate that cyclin A2 or cyclin A and protein tyrosine phosphatase T (CCNA2- PTPRT) and megalin (LRP2)-integrin alpha-7 (ITGA7) gene pairs can provide strong clinically significant interaction effects on the survival of breast cancer patients. Our technique has the potential to be a powerful tool for classification, prediction, and prognosis of cancer and other complex diseases.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>19622426</pmid><doi>10.1109/MEMB.2009.932937</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0739-5175 |
ispartof | Engineering in medicine & biology, 2009-07, Vol.28 (4), p.58-66 |
issn | 0739-5175 0278-0054 1937-4186 |
language | eng |
recordid | cdi_ieee_primary_5165226 |
source | IEEE Electronic Library (IEL) |
subjects | Bioinformatics Breast cancer Breast tumors Data analysis Disease Diseases Gene expression Hazards Medical treatment Neoplasms Performance analysis Proteins |
title | Data-driven approach to predict survival of cancer patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20approach%20to%20predict%20survival%20of%20cancer%20patients&rft.jtitle=Engineering%20in%20medicine%20&%20biology&rft.au=Motakis,%20E.&rft.date=2009-07&rft.volume=28&rft.issue=4&rft.spage=58&rft.epage=66&rft.pages=58-66&rft.issn=0739-5175&rft.eissn=1937-4186&rft.coden=IEMBDE&rft_id=info:doi/10.1109/MEMB.2009.932937&rft_dat=%3Cproquest_RIE%3E2303295261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858733278&rft_id=info:pmid/19622426&rft_ieee_id=5165226&rfr_iscdi=true |