A penalty function method for exploratory adaptive-critic neural network control

A constrained penalty function method for exploratory adaptive-critic neural network (NN) control is presented. While constrained approximate dynamic programming has been effective to guarantee closed-loop system performance and stability objectives, in the presence of a change in the plant dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Di Muro, G., Ferrari, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1414
container_issue
container_start_page 1410
container_title
container_volume
creator Di Muro, G.
Ferrari, S.
description A constrained penalty function method for exploratory adaptive-critic neural network (NN) control is presented. While constrained approximate dynamic programming has been effective to guarantee closed-loop system performance and stability objectives, in the presence of a change in the plant dynamics it may not have the necessary plasticity to explore and fully adapt to the new behaviors of the plant, if these violate the constraints. A generalized constrained approach is introduced to overcome these limitations. Through this methodology it is shown that NNs are not only capable to acquire new plasticity when necessary, but also can adjust their parametric structure reducing their hidden nodes and becoming more computationally efficient.
doi_str_mv 10.1109/MED.2009.5164744
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5164744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5164744</ieee_id><sourcerecordid>5164744</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-7cc949da9ecadf3befbfab359a9151bd57af43be4030cc14ba323f66113831543</originalsourceid><addsrcrecordid>eNo1kD1PwzAYhI1QJWjJjsTiP5Bgx6_jeKxK-ZCKYIC5euPYwpDGkesC-fcEUW55dKfTDUfIJWcF50xfP65vipIxXUhegQI4IZlWNYcSAKpa1qdk_m-gnpH5b1czULU6I9l-_84mgRSMlefkeUkH22OXRuoOvUk-9HRn01toqQuR2u-hCxFTiCPFFofkP21uok_e0N4eInYT0leIH9SEPsXQXZCZw25vsyMX5PV2_bK6zzdPdw-r5Sb3nMmUK2M06Ba1Ndg60VjXOGyE1Ki55E0rFTqYYmCCGcOhQVEKV1Wci1pwCWJBrv52vbV2O0S_wzhuj4-IH3VAU6o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A penalty function method for exploratory adaptive-critic neural network control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Di Muro, G. ; Ferrari, S.</creator><creatorcontrib>Di Muro, G. ; Ferrari, S.</creatorcontrib><description>A constrained penalty function method for exploratory adaptive-critic neural network (NN) control is presented. While constrained approximate dynamic programming has been effective to guarantee closed-loop system performance and stability objectives, in the presence of a change in the plant dynamics it may not have the necessary plasticity to explore and fully adapt to the new behaviors of the plant, if these violate the constraints. A generalized constrained approach is introduced to overcome these limitations. Through this methodology it is shown that NNs are not only capable to acquire new plasticity when necessary, but also can adjust their parametric structure reducing their hidden nodes and becoming more computationally efficient.</description><identifier>ISBN: 1424446848</identifier><identifier>ISBN: 9781424446841</identifier><identifier>EISBN: 9781424446858</identifier><identifier>EISBN: 1424446856</identifier><identifier>DOI: 10.1109/MED.2009.5164744</identifier><identifier>LCCN: 2009904787</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerodynamics ; Approximate dynamic programming (ADP) ; Automatic control ; Automation ; constrained optimization ; Constraint optimization ; Cost function ; Dynamic programming ; forgetting ; Mechanical engineering ; Neural networks ; neural networks (NNs) ; Optimal control ; penalty function ; Stability</subject><ispartof>2009 17th Mediterranean Conference on Control and Automation, 2009, p.1410-1414</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5164744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5164744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Di Muro, G.</creatorcontrib><creatorcontrib>Ferrari, S.</creatorcontrib><title>A penalty function method for exploratory adaptive-critic neural network control</title><title>2009 17th Mediterranean Conference on Control and Automation</title><addtitle>MED</addtitle><description>A constrained penalty function method for exploratory adaptive-critic neural network (NN) control is presented. While constrained approximate dynamic programming has been effective to guarantee closed-loop system performance and stability objectives, in the presence of a change in the plant dynamics it may not have the necessary plasticity to explore and fully adapt to the new behaviors of the plant, if these violate the constraints. A generalized constrained approach is introduced to overcome these limitations. Through this methodology it is shown that NNs are not only capable to acquire new plasticity when necessary, but also can adjust their parametric structure reducing their hidden nodes and becoming more computationally efficient.</description><subject>Aerodynamics</subject><subject>Approximate dynamic programming (ADP)</subject><subject>Automatic control</subject><subject>Automation</subject><subject>constrained optimization</subject><subject>Constraint optimization</subject><subject>Cost function</subject><subject>Dynamic programming</subject><subject>forgetting</subject><subject>Mechanical engineering</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>Optimal control</subject><subject>penalty function</subject><subject>Stability</subject><isbn>1424446848</isbn><isbn>9781424446841</isbn><isbn>9781424446858</isbn><isbn>1424446856</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kD1PwzAYhI1QJWjJjsTiP5Bgx6_jeKxK-ZCKYIC5euPYwpDGkesC-fcEUW55dKfTDUfIJWcF50xfP65vipIxXUhegQI4IZlWNYcSAKpa1qdk_m-gnpH5b1czULU6I9l-_84mgRSMlefkeUkH22OXRuoOvUk-9HRn01toqQuR2u-hCxFTiCPFFofkP21uok_e0N4eInYT0leIH9SEPsXQXZCZw25vsyMX5PV2_bK6zzdPdw-r5Sb3nMmUK2M06Ba1Ndg60VjXOGyE1Ki55E0rFTqYYmCCGcOhQVEKV1Wci1pwCWJBrv52vbV2O0S_wzhuj4-IH3VAU6o</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Di Muro, G.</creator><creator>Ferrari, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>A penalty function method for exploratory adaptive-critic neural network control</title><author>Di Muro, G. ; Ferrari, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-7cc949da9ecadf3befbfab359a9151bd57af43be4030cc14ba323f66113831543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aerodynamics</topic><topic>Approximate dynamic programming (ADP)</topic><topic>Automatic control</topic><topic>Automation</topic><topic>constrained optimization</topic><topic>Constraint optimization</topic><topic>Cost function</topic><topic>Dynamic programming</topic><topic>forgetting</topic><topic>Mechanical engineering</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>Optimal control</topic><topic>penalty function</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Di Muro, G.</creatorcontrib><creatorcontrib>Ferrari, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Di Muro, G.</au><au>Ferrari, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A penalty function method for exploratory adaptive-critic neural network control</atitle><btitle>2009 17th Mediterranean Conference on Control and Automation</btitle><stitle>MED</stitle><date>2009-06</date><risdate>2009</risdate><spage>1410</spage><epage>1414</epage><pages>1410-1414</pages><isbn>1424446848</isbn><isbn>9781424446841</isbn><eisbn>9781424446858</eisbn><eisbn>1424446856</eisbn><abstract>A constrained penalty function method for exploratory adaptive-critic neural network (NN) control is presented. While constrained approximate dynamic programming has been effective to guarantee closed-loop system performance and stability objectives, in the presence of a change in the plant dynamics it may not have the necessary plasticity to explore and fully adapt to the new behaviors of the plant, if these violate the constraints. A generalized constrained approach is introduced to overcome these limitations. Through this methodology it is shown that NNs are not only capable to acquire new plasticity when necessary, but also can adjust their parametric structure reducing their hidden nodes and becoming more computationally efficient.</abstract><pub>IEEE</pub><doi>10.1109/MED.2009.5164744</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424446848
ispartof 2009 17th Mediterranean Conference on Control and Automation, 2009, p.1410-1414
issn
language eng
recordid cdi_ieee_primary_5164744
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aerodynamics
Approximate dynamic programming (ADP)
Automatic control
Automation
constrained optimization
Constraint optimization
Cost function
Dynamic programming
forgetting
Mechanical engineering
Neural networks
neural networks (NNs)
Optimal control
penalty function
Stability
title A penalty function method for exploratory adaptive-critic neural network control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20penalty%20function%20method%20for%20exploratory%20adaptive-critic%20neural%20network%20control&rft.btitle=2009%2017th%20Mediterranean%20Conference%20on%20Control%20and%20Automation&rft.au=Di%20Muro,%20G.&rft.date=2009-06&rft.spage=1410&rft.epage=1414&rft.pages=1410-1414&rft.isbn=1424446848&rft.isbn_list=9781424446841&rft_id=info:doi/10.1109/MED.2009.5164744&rft_dat=%3Cieee_6IE%3E5164744%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424446858&rft.eisbn_list=1424446856&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5164744&rfr_iscdi=true