Optimal motion planning for robotic manipulators with dynamic obstacles using mixed-integer linear programming

The task of motion planning for robotic manipulators means to drive an end-effector between designated points in the work area while obstacles are not hit. This contribution investigates the case of dynamic obstacles (like human operators) and the consideration of a performance criterion to be maxim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hao Ding, Mingxiang Zhou, Stursberg, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 939
container_issue
container_start_page 934
container_title
container_volume
creator Hao Ding
Mingxiang Zhou
Stursberg, O.
description The task of motion planning for robotic manipulators means to drive an end-effector between designated points in the work area while obstacles are not hit. This contribution investigates the case of dynamic obstacles (like human operators) and the consideration of a performance criterion to be maximized for the motion. The proposed approach maps the dynamics of the manipulator and the obstacles into the C times T-space (spanned by the configuration C and the time T). Within this space, an (sub-)optimal sequence of configurations in the collision-free subspace is determined by mixed-integer linear programming. To achieve sufficient computational efficiency, the optimization task is approached by employing the principles of model predictive control. The paper describes the approach based on the example of a two-link robot interacting with a human operator.
doi_str_mv 10.1109/MED.2009.5164665
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5164665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5164665</ieee_id><sourcerecordid>5164665</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-f212ed9da0a07a007c18218f058fc33720c64b181cc72937abd7569d805453da3</originalsourceid><addsrcrecordid>eNo1UMlOwzAQNUKVoCV3JC7-gZSxY8f2EZWySEW9wLmaJE4xSuzITgX9e1JR5jJ620hvCLllsGQMzP3b-nHJAcxSslKUpbwgmVGaCS6EKLXUl2T-D4SekfnJa0Aora5IltIXTCNkAcCvid8Oo-uxo30YXfB06NB75_e0DZHGUE1sTXv0bjh0OIaY6LcbP2lz9NhPSqjSiHVnEz2kU6p3P7bJnR_t3kbaOW8x0iGGfcS-nww3ZNZil2x23gvy8bR-X73km-3z6-phkzsGcsxbzrhtTIOAoBBA1UxzpluQuq2LQnGoS1ExzepacVMorBolS9NokFOxBosFufu766y1uyFOFeNxd_5X8Qtd4l4Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal motion planning for robotic manipulators with dynamic obstacles using mixed-integer linear programming</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hao Ding ; Mingxiang Zhou ; Stursberg, O.</creator><creatorcontrib>Hao Ding ; Mingxiang Zhou ; Stursberg, O.</creatorcontrib><description>The task of motion planning for robotic manipulators means to drive an end-effector between designated points in the work area while obstacles are not hit. This contribution investigates the case of dynamic obstacles (like human operators) and the consideration of a performance criterion to be maximized for the motion. The proposed approach maps the dynamics of the manipulator and the obstacles into the C times T-space (spanned by the configuration C and the time T). Within this space, an (sub-)optimal sequence of configurations in the collision-free subspace is determined by mixed-integer linear programming. To achieve sufficient computational efficiency, the optimization task is approached by employing the principles of model predictive control. The paper describes the approach based on the example of a two-link robot interacting with a human operator.</description><identifier>ISBN: 1424446848</identifier><identifier>ISBN: 9781424446841</identifier><identifier>EISBN: 9781424446858</identifier><identifier>EISBN: 1424446856</identifier><identifier>DOI: 10.1109/MED.2009.5164665</identifier><identifier>LCCN: 2009904787</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Dynamic programming ; Linear programming ; Manipulator dynamics ; Motion planning ; Orbital robotics ; Path planning ; Robotics and automation ; Robots ; Trajectory</subject><ispartof>2009 17th Mediterranean Conference on Control and Automation, 2009, p.934-939</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5164665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5164665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hao Ding</creatorcontrib><creatorcontrib>Mingxiang Zhou</creatorcontrib><creatorcontrib>Stursberg, O.</creatorcontrib><title>Optimal motion planning for robotic manipulators with dynamic obstacles using mixed-integer linear programming</title><title>2009 17th Mediterranean Conference on Control and Automation</title><addtitle>MED</addtitle><description>The task of motion planning for robotic manipulators means to drive an end-effector between designated points in the work area while obstacles are not hit. This contribution investigates the case of dynamic obstacles (like human operators) and the consideration of a performance criterion to be maximized for the motion. The proposed approach maps the dynamics of the manipulator and the obstacles into the C times T-space (spanned by the configuration C and the time T). Within this space, an (sub-)optimal sequence of configurations in the collision-free subspace is determined by mixed-integer linear programming. To achieve sufficient computational efficiency, the optimization task is approached by employing the principles of model predictive control. The paper describes the approach based on the example of a two-link robot interacting with a human operator.</description><subject>Automatic control</subject><subject>Dynamic programming</subject><subject>Linear programming</subject><subject>Manipulator dynamics</subject><subject>Motion planning</subject><subject>Orbital robotics</subject><subject>Path planning</subject><subject>Robotics and automation</subject><subject>Robots</subject><subject>Trajectory</subject><isbn>1424446848</isbn><isbn>9781424446841</isbn><isbn>9781424446858</isbn><isbn>1424446856</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMlOwzAQNUKVoCV3JC7-gZSxY8f2EZWySEW9wLmaJE4xSuzITgX9e1JR5jJ620hvCLllsGQMzP3b-nHJAcxSslKUpbwgmVGaCS6EKLXUl2T-D4SekfnJa0Aora5IltIXTCNkAcCvid8Oo-uxo30YXfB06NB75_e0DZHGUE1sTXv0bjh0OIaY6LcbP2lz9NhPSqjSiHVnEz2kU6p3P7bJnR_t3kbaOW8x0iGGfcS-nww3ZNZil2x23gvy8bR-X73km-3z6-phkzsGcsxbzrhtTIOAoBBA1UxzpluQuq2LQnGoS1ExzepacVMorBolS9NokFOxBosFufu766y1uyFOFeNxd_5X8Qtd4l4Q</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Hao Ding</creator><creator>Mingxiang Zhou</creator><creator>Stursberg, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Optimal motion planning for robotic manipulators with dynamic obstacles using mixed-integer linear programming</title><author>Hao Ding ; Mingxiang Zhou ; Stursberg, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-f212ed9da0a07a007c18218f058fc33720c64b181cc72937abd7569d805453da3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automatic control</topic><topic>Dynamic programming</topic><topic>Linear programming</topic><topic>Manipulator dynamics</topic><topic>Motion planning</topic><topic>Orbital robotics</topic><topic>Path planning</topic><topic>Robotics and automation</topic><topic>Robots</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao Ding</creatorcontrib><creatorcontrib>Mingxiang Zhou</creatorcontrib><creatorcontrib>Stursberg, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao Ding</au><au>Mingxiang Zhou</au><au>Stursberg, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal motion planning for robotic manipulators with dynamic obstacles using mixed-integer linear programming</atitle><btitle>2009 17th Mediterranean Conference on Control and Automation</btitle><stitle>MED</stitle><date>2009-06</date><risdate>2009</risdate><spage>934</spage><epage>939</epage><pages>934-939</pages><isbn>1424446848</isbn><isbn>9781424446841</isbn><eisbn>9781424446858</eisbn><eisbn>1424446856</eisbn><abstract>The task of motion planning for robotic manipulators means to drive an end-effector between designated points in the work area while obstacles are not hit. This contribution investigates the case of dynamic obstacles (like human operators) and the consideration of a performance criterion to be maximized for the motion. The proposed approach maps the dynamics of the manipulator and the obstacles into the C times T-space (spanned by the configuration C and the time T). Within this space, an (sub-)optimal sequence of configurations in the collision-free subspace is determined by mixed-integer linear programming. To achieve sufficient computational efficiency, the optimization task is approached by employing the principles of model predictive control. The paper describes the approach based on the example of a two-link robot interacting with a human operator.</abstract><pub>IEEE</pub><doi>10.1109/MED.2009.5164665</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424446848
ispartof 2009 17th Mediterranean Conference on Control and Automation, 2009, p.934-939
issn
language eng
recordid cdi_ieee_primary_5164665
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic control
Dynamic programming
Linear programming
Manipulator dynamics
Motion planning
Orbital robotics
Path planning
Robotics and automation
Robots
Trajectory
title Optimal motion planning for robotic manipulators with dynamic obstacles using mixed-integer linear programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20motion%20planning%20for%20robotic%20manipulators%20with%20dynamic%20obstacles%20using%20mixed-integer%20linear%20programming&rft.btitle=2009%2017th%20Mediterranean%20Conference%20on%20Control%20and%20Automation&rft.au=Hao%20Ding&rft.date=2009-06&rft.spage=934&rft.epage=939&rft.pages=934-939&rft.isbn=1424446848&rft.isbn_list=9781424446841&rft_id=info:doi/10.1109/MED.2009.5164665&rft_dat=%3Cieee_6IE%3E5164665%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424446858&rft.eisbn_list=1424446856&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5164665&rfr_iscdi=true