Optimal motion planning for robotic manipulators with dynamic obstacles using mixed-integer linear programming
The task of motion planning for robotic manipulators means to drive an end-effector between designated points in the work area while obstacles are not hit. This contribution investigates the case of dynamic obstacles (like human operators) and the consideration of a performance criterion to be maxim...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 939 |
---|---|
container_issue | |
container_start_page | 934 |
container_title | |
container_volume | |
creator | Hao Ding Mingxiang Zhou Stursberg, O. |
description | The task of motion planning for robotic manipulators means to drive an end-effector between designated points in the work area while obstacles are not hit. This contribution investigates the case of dynamic obstacles (like human operators) and the consideration of a performance criterion to be maximized for the motion. The proposed approach maps the dynamics of the manipulator and the obstacles into the C times T-space (spanned by the configuration C and the time T). Within this space, an (sub-)optimal sequence of configurations in the collision-free subspace is determined by mixed-integer linear programming. To achieve sufficient computational efficiency, the optimization task is approached by employing the principles of model predictive control. The paper describes the approach based on the example of a two-link robot interacting with a human operator. |
doi_str_mv | 10.1109/MED.2009.5164665 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5164665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5164665</ieee_id><sourcerecordid>5164665</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-f212ed9da0a07a007c18218f058fc33720c64b181cc72937abd7569d805453da3</originalsourceid><addsrcrecordid>eNo1UMlOwzAQNUKVoCV3JC7-gZSxY8f2EZWySEW9wLmaJE4xSuzITgX9e1JR5jJ620hvCLllsGQMzP3b-nHJAcxSslKUpbwgmVGaCS6EKLXUl2T-D4SekfnJa0Aora5IltIXTCNkAcCvid8Oo-uxo30YXfB06NB75_e0DZHGUE1sTXv0bjh0OIaY6LcbP2lz9NhPSqjSiHVnEz2kU6p3P7bJnR_t3kbaOW8x0iGGfcS-nww3ZNZil2x23gvy8bR-X73km-3z6-phkzsGcsxbzrhtTIOAoBBA1UxzpluQuq2LQnGoS1ExzepacVMorBolS9NokFOxBosFufu766y1uyFOFeNxd_5X8Qtd4l4Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal motion planning for robotic manipulators with dynamic obstacles using mixed-integer linear programming</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hao Ding ; Mingxiang Zhou ; Stursberg, O.</creator><creatorcontrib>Hao Ding ; Mingxiang Zhou ; Stursberg, O.</creatorcontrib><description>The task of motion planning for robotic manipulators means to drive an end-effector between designated points in the work area while obstacles are not hit. This contribution investigates the case of dynamic obstacles (like human operators) and the consideration of a performance criterion to be maximized for the motion. The proposed approach maps the dynamics of the manipulator and the obstacles into the C times T-space (spanned by the configuration C and the time T). Within this space, an (sub-)optimal sequence of configurations in the collision-free subspace is determined by mixed-integer linear programming. To achieve sufficient computational efficiency, the optimization task is approached by employing the principles of model predictive control. The paper describes the approach based on the example of a two-link robot interacting with a human operator.</description><identifier>ISBN: 1424446848</identifier><identifier>ISBN: 9781424446841</identifier><identifier>EISBN: 9781424446858</identifier><identifier>EISBN: 1424446856</identifier><identifier>DOI: 10.1109/MED.2009.5164665</identifier><identifier>LCCN: 2009904787</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Dynamic programming ; Linear programming ; Manipulator dynamics ; Motion planning ; Orbital robotics ; Path planning ; Robotics and automation ; Robots ; Trajectory</subject><ispartof>2009 17th Mediterranean Conference on Control and Automation, 2009, p.934-939</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5164665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5164665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hao Ding</creatorcontrib><creatorcontrib>Mingxiang Zhou</creatorcontrib><creatorcontrib>Stursberg, O.</creatorcontrib><title>Optimal motion planning for robotic manipulators with dynamic obstacles using mixed-integer linear programming</title><title>2009 17th Mediterranean Conference on Control and Automation</title><addtitle>MED</addtitle><description>The task of motion planning for robotic manipulators means to drive an end-effector between designated points in the work area while obstacles are not hit. This contribution investigates the case of dynamic obstacles (like human operators) and the consideration of a performance criterion to be maximized for the motion. The proposed approach maps the dynamics of the manipulator and the obstacles into the C times T-space (spanned by the configuration C and the time T). Within this space, an (sub-)optimal sequence of configurations in the collision-free subspace is determined by mixed-integer linear programming. To achieve sufficient computational efficiency, the optimization task is approached by employing the principles of model predictive control. The paper describes the approach based on the example of a two-link robot interacting with a human operator.</description><subject>Automatic control</subject><subject>Dynamic programming</subject><subject>Linear programming</subject><subject>Manipulator dynamics</subject><subject>Motion planning</subject><subject>Orbital robotics</subject><subject>Path planning</subject><subject>Robotics and automation</subject><subject>Robots</subject><subject>Trajectory</subject><isbn>1424446848</isbn><isbn>9781424446841</isbn><isbn>9781424446858</isbn><isbn>1424446856</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMlOwzAQNUKVoCV3JC7-gZSxY8f2EZWySEW9wLmaJE4xSuzITgX9e1JR5jJ620hvCLllsGQMzP3b-nHJAcxSslKUpbwgmVGaCS6EKLXUl2T-D4SekfnJa0Aora5IltIXTCNkAcCvid8Oo-uxo30YXfB06NB75_e0DZHGUE1sTXv0bjh0OIaY6LcbP2lz9NhPSqjSiHVnEz2kU6p3P7bJnR_t3kbaOW8x0iGGfcS-nww3ZNZil2x23gvy8bR-X73km-3z6-phkzsGcsxbzrhtTIOAoBBA1UxzpluQuq2LQnGoS1ExzepacVMorBolS9NokFOxBosFufu766y1uyFOFeNxd_5X8Qtd4l4Q</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Hao Ding</creator><creator>Mingxiang Zhou</creator><creator>Stursberg, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200906</creationdate><title>Optimal motion planning for robotic manipulators with dynamic obstacles using mixed-integer linear programming</title><author>Hao Ding ; Mingxiang Zhou ; Stursberg, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-f212ed9da0a07a007c18218f058fc33720c64b181cc72937abd7569d805453da3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automatic control</topic><topic>Dynamic programming</topic><topic>Linear programming</topic><topic>Manipulator dynamics</topic><topic>Motion planning</topic><topic>Orbital robotics</topic><topic>Path planning</topic><topic>Robotics and automation</topic><topic>Robots</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao Ding</creatorcontrib><creatorcontrib>Mingxiang Zhou</creatorcontrib><creatorcontrib>Stursberg, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao Ding</au><au>Mingxiang Zhou</au><au>Stursberg, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal motion planning for robotic manipulators with dynamic obstacles using mixed-integer linear programming</atitle><btitle>2009 17th Mediterranean Conference on Control and Automation</btitle><stitle>MED</stitle><date>2009-06</date><risdate>2009</risdate><spage>934</spage><epage>939</epage><pages>934-939</pages><isbn>1424446848</isbn><isbn>9781424446841</isbn><eisbn>9781424446858</eisbn><eisbn>1424446856</eisbn><abstract>The task of motion planning for robotic manipulators means to drive an end-effector between designated points in the work area while obstacles are not hit. This contribution investigates the case of dynamic obstacles (like human operators) and the consideration of a performance criterion to be maximized for the motion. The proposed approach maps the dynamics of the manipulator and the obstacles into the C times T-space (spanned by the configuration C and the time T). Within this space, an (sub-)optimal sequence of configurations in the collision-free subspace is determined by mixed-integer linear programming. To achieve sufficient computational efficiency, the optimization task is approached by employing the principles of model predictive control. The paper describes the approach based on the example of a two-link robot interacting with a human operator.</abstract><pub>IEEE</pub><doi>10.1109/MED.2009.5164665</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424446848 |
ispartof | 2009 17th Mediterranean Conference on Control and Automation, 2009, p.934-939 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5164665 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automatic control Dynamic programming Linear programming Manipulator dynamics Motion planning Orbital robotics Path planning Robotics and automation Robots Trajectory |
title | Optimal motion planning for robotic manipulators with dynamic obstacles using mixed-integer linear programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20motion%20planning%20for%20robotic%20manipulators%20with%20dynamic%20obstacles%20using%20mixed-integer%20linear%20programming&rft.btitle=2009%2017th%20Mediterranean%20Conference%20on%20Control%20and%20Automation&rft.au=Hao%20Ding&rft.date=2009-06&rft.spage=934&rft.epage=939&rft.pages=934-939&rft.isbn=1424446848&rft.isbn_list=9781424446841&rft_id=info:doi/10.1109/MED.2009.5164665&rft_dat=%3Cieee_6IE%3E5164665%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424446858&rft.eisbn_list=1424446856&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5164665&rfr_iscdi=true |