Stability of uncertain piecewise affine systems with time-delay

This paper addresses the problem of robust stability of piecewise affine (PWA) uncertain systems with unknown time-varying delay in the state. It is assumed that the uncertainty is norm-bounded and that upper bounds on the state delay and its rate of change are available. A set of linear matrix ineq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moezzi, K., Rodrigues, L., Aghdam, A.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2378
container_issue
container_start_page 2373
container_title
container_volume
creator Moezzi, K.
Rodrigues, L.
Aghdam, A.G.
description This paper addresses the problem of robust stability of piecewise affine (PWA) uncertain systems with unknown time-varying delay in the state. It is assumed that the uncertainty is norm-bounded and that upper bounds on the state delay and its rate of change are available. A set of linear matrix inequalities (LMI) is derived providing sufficient conditions for the stability of the system. These conditions depend on the upper bound of the delay. The main contributions of the paper are as follows. First, new delay-dependent LMI conditions are derived for the stability of PWA time-delay systems. Second, the stability conditions are extended to the case of uncertain PWA time-delay systems. Numerical examples are presented to show the effectiveness of the approach.
doi_str_mv 10.1109/ACC.2009.5160711
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5160711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5160711</ieee_id><sourcerecordid>5160711</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-aa6a4b497934b9ba7c16c331783e815b4f34fdaa374454285c3b203d69270e43</originalsourceid><addsrcrecordid>eNpFkEtLxDAURuML7IzuBTf5A625ubdJs5Kh-IIBF87C3ZC2txiZ1qGJDP33Cg64-hYHDodPiBtQBYByd6u6LrRSrijBKAtwIhZAmohKTdWpyDTaKi8rA2f_AN_PRaYsYQ4G3KVYxPipFDhnVCbu35Jvwi6kWX718ntseUo-jHIfuOVDiCx934eRZZxj4iHKQ0gfMoWB8453fr4SF73fRb4-7lJsHh829XO-fn16qVfrPIAtU-698dSQsw6pcY23LZgWEWyFXEHZUI_Ud96j_S0mXZUtNlphZ5y2igmX4vZPG5h5u5_C4Kd5ezwBfwDEuEuJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stability of uncertain piecewise affine systems with time-delay</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Moezzi, K. ; Rodrigues, L. ; Aghdam, A.G.</creator><creatorcontrib>Moezzi, K. ; Rodrigues, L. ; Aghdam, A.G.</creatorcontrib><description>This paper addresses the problem of robust stability of piecewise affine (PWA) uncertain systems with unknown time-varying delay in the state. It is assumed that the uncertainty is norm-bounded and that upper bounds on the state delay and its rate of change are available. A set of linear matrix inequalities (LMI) is derived providing sufficient conditions for the stability of the system. These conditions depend on the upper bound of the delay. The main contributions of the paper are as follows. First, new delay-dependent LMI conditions are derived for the stability of PWA time-delay systems. Second, the stability conditions are extended to the case of uncertain PWA time-delay systems. Numerical examples are presented to show the effectiveness of the approach.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 142444523X</identifier><identifier>ISBN: 9781424445233</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424445248</identifier><identifier>EISBN: 9781424445240</identifier><identifier>DOI: 10.1109/ACC.2009.5160711</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Delay ; Lyapunov method ; Robust stability ; Stability analysis ; Sufficient conditions ; Time varying systems ; Uncertain systems ; Uncertainty ; Upper bound</subject><ispartof>2009 American Control Conference, 2009, p.2373-2378</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5160711$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5160711$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moezzi, K.</creatorcontrib><creatorcontrib>Rodrigues, L.</creatorcontrib><creatorcontrib>Aghdam, A.G.</creatorcontrib><title>Stability of uncertain piecewise affine systems with time-delay</title><title>2009 American Control Conference</title><addtitle>ACC</addtitle><description>This paper addresses the problem of robust stability of piecewise affine (PWA) uncertain systems with unknown time-varying delay in the state. It is assumed that the uncertainty is norm-bounded and that upper bounds on the state delay and its rate of change are available. A set of linear matrix inequalities (LMI) is derived providing sufficient conditions for the stability of the system. These conditions depend on the upper bound of the delay. The main contributions of the paper are as follows. First, new delay-dependent LMI conditions are derived for the stability of PWA time-delay systems. Second, the stability conditions are extended to the case of uncertain PWA time-delay systems. Numerical examples are presented to show the effectiveness of the approach.</description><subject>Control systems</subject><subject>Delay</subject><subject>Lyapunov method</subject><subject>Robust stability</subject><subject>Stability analysis</subject><subject>Sufficient conditions</subject><subject>Time varying systems</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><subject>Upper bound</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>142444523X</isbn><isbn>9781424445233</isbn><isbn>1424445248</isbn><isbn>9781424445240</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLxDAURuML7IzuBTf5A625ubdJs5Kh-IIBF87C3ZC2txiZ1qGJDP33Cg64-hYHDodPiBtQBYByd6u6LrRSrijBKAtwIhZAmohKTdWpyDTaKi8rA2f_AN_PRaYsYQ4G3KVYxPipFDhnVCbu35Jvwi6kWX718ntseUo-jHIfuOVDiCx934eRZZxj4iHKQ0gfMoWB8453fr4SF73fRb4-7lJsHh829XO-fn16qVfrPIAtU-698dSQsw6pcY23LZgWEWyFXEHZUI_Ud96j_S0mXZUtNlphZ5y2igmX4vZPG5h5u5_C4Kd5ezwBfwDEuEuJ</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Moezzi, K.</creator><creator>Rodrigues, L.</creator><creator>Aghdam, A.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200906</creationdate><title>Stability of uncertain piecewise affine systems with time-delay</title><author>Moezzi, K. ; Rodrigues, L. ; Aghdam, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-aa6a4b497934b9ba7c16c331783e815b4f34fdaa374454285c3b203d69270e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Control systems</topic><topic>Delay</topic><topic>Lyapunov method</topic><topic>Robust stability</topic><topic>Stability analysis</topic><topic>Sufficient conditions</topic><topic>Time varying systems</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><topic>Upper bound</topic><toplevel>online_resources</toplevel><creatorcontrib>Moezzi, K.</creatorcontrib><creatorcontrib>Rodrigues, L.</creatorcontrib><creatorcontrib>Aghdam, A.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moezzi, K.</au><au>Rodrigues, L.</au><au>Aghdam, A.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stability of uncertain piecewise affine systems with time-delay</atitle><btitle>2009 American Control Conference</btitle><stitle>ACC</stitle><date>2009-06</date><risdate>2009</risdate><spage>2373</spage><epage>2378</epage><pages>2373-2378</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>142444523X</isbn><isbn>9781424445233</isbn><eisbn>1424445248</eisbn><eisbn>9781424445240</eisbn><abstract>This paper addresses the problem of robust stability of piecewise affine (PWA) uncertain systems with unknown time-varying delay in the state. It is assumed that the uncertainty is norm-bounded and that upper bounds on the state delay and its rate of change are available. A set of linear matrix inequalities (LMI) is derived providing sufficient conditions for the stability of the system. These conditions depend on the upper bound of the delay. The main contributions of the paper are as follows. First, new delay-dependent LMI conditions are derived for the stability of PWA time-delay systems. Second, the stability conditions are extended to the case of uncertain PWA time-delay systems. Numerical examples are presented to show the effectiveness of the approach.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2009.5160711</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2009 American Control Conference, 2009, p.2373-2378
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_5160711
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control systems
Delay
Lyapunov method
Robust stability
Stability analysis
Sufficient conditions
Time varying systems
Uncertain systems
Uncertainty
Upper bound
title Stability of uncertain piecewise affine systems with time-delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stability%20of%20uncertain%20piecewise%20affine%20systems%20with%20time-delay&rft.btitle=2009%20American%20Control%20Conference&rft.au=Moezzi,%20K.&rft.date=2009-06&rft.spage=2373&rft.epage=2378&rft.pages=2373-2378&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=142444523X&rft.isbn_list=9781424445233&rft_id=info:doi/10.1109/ACC.2009.5160711&rft_dat=%3Cieee_6IE%3E5160711%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424445248&rft.eisbn_list=9781424445240&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5160711&rfr_iscdi=true