Stability of uncertain piecewise affine systems with time-delay
This paper addresses the problem of robust stability of piecewise affine (PWA) uncertain systems with unknown time-varying delay in the state. It is assumed that the uncertainty is norm-bounded and that upper bounds on the state delay and its rate of change are available. A set of linear matrix ineq...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2378 |
---|---|
container_issue | |
container_start_page | 2373 |
container_title | |
container_volume | |
creator | Moezzi, K. Rodrigues, L. Aghdam, A.G. |
description | This paper addresses the problem of robust stability of piecewise affine (PWA) uncertain systems with unknown time-varying delay in the state. It is assumed that the uncertainty is norm-bounded and that upper bounds on the state delay and its rate of change are available. A set of linear matrix inequalities (LMI) is derived providing sufficient conditions for the stability of the system. These conditions depend on the upper bound of the delay. The main contributions of the paper are as follows. First, new delay-dependent LMI conditions are derived for the stability of PWA time-delay systems. Second, the stability conditions are extended to the case of uncertain PWA time-delay systems. Numerical examples are presented to show the effectiveness of the approach. |
doi_str_mv | 10.1109/ACC.2009.5160711 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5160711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5160711</ieee_id><sourcerecordid>5160711</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-aa6a4b497934b9ba7c16c331783e815b4f34fdaa374454285c3b203d69270e43</originalsourceid><addsrcrecordid>eNpFkEtLxDAURuML7IzuBTf5A625ubdJs5Kh-IIBF87C3ZC2txiZ1qGJDP33Cg64-hYHDodPiBtQBYByd6u6LrRSrijBKAtwIhZAmohKTdWpyDTaKi8rA2f_AN_PRaYsYQ4G3KVYxPipFDhnVCbu35Jvwi6kWX718ntseUo-jHIfuOVDiCx934eRZZxj4iHKQ0gfMoWB8453fr4SF73fRb4-7lJsHh829XO-fn16qVfrPIAtU-698dSQsw6pcY23LZgWEWyFXEHZUI_Ud96j_S0mXZUtNlphZ5y2igmX4vZPG5h5u5_C4Kd5ezwBfwDEuEuJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stability of uncertain piecewise affine systems with time-delay</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Moezzi, K. ; Rodrigues, L. ; Aghdam, A.G.</creator><creatorcontrib>Moezzi, K. ; Rodrigues, L. ; Aghdam, A.G.</creatorcontrib><description>This paper addresses the problem of robust stability of piecewise affine (PWA) uncertain systems with unknown time-varying delay in the state. It is assumed that the uncertainty is norm-bounded and that upper bounds on the state delay and its rate of change are available. A set of linear matrix inequalities (LMI) is derived providing sufficient conditions for the stability of the system. These conditions depend on the upper bound of the delay. The main contributions of the paper are as follows. First, new delay-dependent LMI conditions are derived for the stability of PWA time-delay systems. Second, the stability conditions are extended to the case of uncertain PWA time-delay systems. Numerical examples are presented to show the effectiveness of the approach.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 142444523X</identifier><identifier>ISBN: 9781424445233</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424445248</identifier><identifier>EISBN: 9781424445240</identifier><identifier>DOI: 10.1109/ACC.2009.5160711</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Delay ; Lyapunov method ; Robust stability ; Stability analysis ; Sufficient conditions ; Time varying systems ; Uncertain systems ; Uncertainty ; Upper bound</subject><ispartof>2009 American Control Conference, 2009, p.2373-2378</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5160711$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5160711$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moezzi, K.</creatorcontrib><creatorcontrib>Rodrigues, L.</creatorcontrib><creatorcontrib>Aghdam, A.G.</creatorcontrib><title>Stability of uncertain piecewise affine systems with time-delay</title><title>2009 American Control Conference</title><addtitle>ACC</addtitle><description>This paper addresses the problem of robust stability of piecewise affine (PWA) uncertain systems with unknown time-varying delay in the state. It is assumed that the uncertainty is norm-bounded and that upper bounds on the state delay and its rate of change are available. A set of linear matrix inequalities (LMI) is derived providing sufficient conditions for the stability of the system. These conditions depend on the upper bound of the delay. The main contributions of the paper are as follows. First, new delay-dependent LMI conditions are derived for the stability of PWA time-delay systems. Second, the stability conditions are extended to the case of uncertain PWA time-delay systems. Numerical examples are presented to show the effectiveness of the approach.</description><subject>Control systems</subject><subject>Delay</subject><subject>Lyapunov method</subject><subject>Robust stability</subject><subject>Stability analysis</subject><subject>Sufficient conditions</subject><subject>Time varying systems</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><subject>Upper bound</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>142444523X</isbn><isbn>9781424445233</isbn><isbn>1424445248</isbn><isbn>9781424445240</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLxDAURuML7IzuBTf5A625ubdJs5Kh-IIBF87C3ZC2txiZ1qGJDP33Cg64-hYHDodPiBtQBYByd6u6LrRSrijBKAtwIhZAmohKTdWpyDTaKi8rA2f_AN_PRaYsYQ4G3KVYxPipFDhnVCbu35Jvwi6kWX718ntseUo-jHIfuOVDiCx934eRZZxj4iHKQ0gfMoWB8453fr4SF73fRb4-7lJsHh829XO-fn16qVfrPIAtU-698dSQsw6pcY23LZgWEWyFXEHZUI_Ud96j_S0mXZUtNlphZ5y2igmX4vZPG5h5u5_C4Kd5ezwBfwDEuEuJ</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Moezzi, K.</creator><creator>Rodrigues, L.</creator><creator>Aghdam, A.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200906</creationdate><title>Stability of uncertain piecewise affine systems with time-delay</title><author>Moezzi, K. ; Rodrigues, L. ; Aghdam, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-aa6a4b497934b9ba7c16c331783e815b4f34fdaa374454285c3b203d69270e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Control systems</topic><topic>Delay</topic><topic>Lyapunov method</topic><topic>Robust stability</topic><topic>Stability analysis</topic><topic>Sufficient conditions</topic><topic>Time varying systems</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><topic>Upper bound</topic><toplevel>online_resources</toplevel><creatorcontrib>Moezzi, K.</creatorcontrib><creatorcontrib>Rodrigues, L.</creatorcontrib><creatorcontrib>Aghdam, A.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moezzi, K.</au><au>Rodrigues, L.</au><au>Aghdam, A.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stability of uncertain piecewise affine systems with time-delay</atitle><btitle>2009 American Control Conference</btitle><stitle>ACC</stitle><date>2009-06</date><risdate>2009</risdate><spage>2373</spage><epage>2378</epage><pages>2373-2378</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>142444523X</isbn><isbn>9781424445233</isbn><eisbn>1424445248</eisbn><eisbn>9781424445240</eisbn><abstract>This paper addresses the problem of robust stability of piecewise affine (PWA) uncertain systems with unknown time-varying delay in the state. It is assumed that the uncertainty is norm-bounded and that upper bounds on the state delay and its rate of change are available. A set of linear matrix inequalities (LMI) is derived providing sufficient conditions for the stability of the system. These conditions depend on the upper bound of the delay. The main contributions of the paper are as follows. First, new delay-dependent LMI conditions are derived for the stability of PWA time-delay systems. Second, the stability conditions are extended to the case of uncertain PWA time-delay systems. Numerical examples are presented to show the effectiveness of the approach.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2009.5160711</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | 2009 American Control Conference, 2009, p.2373-2378 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_5160711 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Control systems Delay Lyapunov method Robust stability Stability analysis Sufficient conditions Time varying systems Uncertain systems Uncertainty Upper bound |
title | Stability of uncertain piecewise affine systems with time-delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stability%20of%20uncertain%20piecewise%20affine%20systems%20with%20time-delay&rft.btitle=2009%20American%20Control%20Conference&rft.au=Moezzi,%20K.&rft.date=2009-06&rft.spage=2373&rft.epage=2378&rft.pages=2373-2378&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=142444523X&rft.isbn_list=9781424445233&rft_id=info:doi/10.1109/ACC.2009.5160711&rft_dat=%3Cieee_6IE%3E5160711%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424445248&rft.eisbn_list=9781424445240&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5160711&rfr_iscdi=true |