Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces
This paper addresses the problem of controlling a single mobile robot to converge smoothly to a pre-specified closed curve. Once in the curve, the robot remains circulating along it. The main motivation for this is the control of unmanned airplanes, where the robot cannot converge to a single point....
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2017 |
---|---|
container_issue | |
container_start_page | 2012 |
container_title | |
container_volume | |
creator | Goncalves, V.M. Pimenta, L. Maia, C.A. Pereira, G.A.S. |
description | This paper addresses the problem of controlling a single mobile robot to converge smoothly to a pre-specified closed curve. Once in the curve, the robot remains circulating along it. The main motivation for this is the control of unmanned airplanes, where the robot cannot converge to a single point. Our control law is based on an artificial vector field that allows for the generalization to time-varying curves defined in n-dimensional spaces. We also present results that may be used to control mobile robots moving with constant speed. We devise convergence proofs and present simulations that verify the proposed approach. |
doi_str_mv | 10.1109/ACC.2009.5160350 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5160350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5160350</ieee_id><sourcerecordid>5160350</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9a505f45722e0605095672b024cc52caf34c6cb61aa7711097d61a142572d3c03</originalsourceid><addsrcrecordid>eNpFUEtLAzEYjC9wW70LXvIHUr-8m2NZfEHBi4K3kmaTEtlmS7Jd8N8bseBpBub7hplB6I7CglIwD6u2XTAAs5BUAZdwhmZUMCGEZGJ5jhrG9ZLIpaIX_wL_vEQNaMEJVdRco1kpXwDUGAUN2q_yGEN00fZ48m4cMg7R913BodI8bIcRuyFNPu98ch7b1GEXszv2doxDwkPAY9x7Mtn8HdMOu2OefMEx4US6KqRSr6p3OVjnyw26CrYv_vaEc_Tx9PjevpD12_Nru1qTSLUcibESZBBSM-ZBgQQjlWZbYMI5yZwNXDjltopaq_XvLrqrvPatHx13wOfo_s83eu83hxz3Nd7mtBn_AbJZXI8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Goncalves, V.M. ; Pimenta, L. ; Maia, C.A. ; Pereira, G.A.S.</creator><creatorcontrib>Goncalves, V.M. ; Pimenta, L. ; Maia, C.A. ; Pereira, G.A.S.</creatorcontrib><description>This paper addresses the problem of controlling a single mobile robot to converge smoothly to a pre-specified closed curve. Once in the curve, the robot remains circulating along it. The main motivation for this is the control of unmanned airplanes, where the robot cannot converge to a single point. Our control law is based on an artificial vector field that allows for the generalization to time-varying curves defined in n-dimensional spaces. We also present results that may be used to control mobile robots moving with constant speed. We devise convergence proofs and present simulations that verify the proposed approach.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 142444523X</identifier><identifier>ISBN: 9781424445233</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424445248</identifier><identifier>EISBN: 9781424445240</identifier><identifier>DOI: 10.1109/ACC.2009.5160350</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Airplanes ; Convergence ; Limit-cycles ; Mobile robots ; Monitoring ; Orbital robotics ; Robot control ; Robustness ; Surveillance</subject><ispartof>2009 American Control Conference, 2009, p.2012-2017</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5160350$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5160350$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goncalves, V.M.</creatorcontrib><creatorcontrib>Pimenta, L.</creatorcontrib><creatorcontrib>Maia, C.A.</creatorcontrib><creatorcontrib>Pereira, G.A.S.</creatorcontrib><title>Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces</title><title>2009 American Control Conference</title><addtitle>ACC</addtitle><description>This paper addresses the problem of controlling a single mobile robot to converge smoothly to a pre-specified closed curve. Once in the curve, the robot remains circulating along it. The main motivation for this is the control of unmanned airplanes, where the robot cannot converge to a single point. Our control law is based on an artificial vector field that allows for the generalization to time-varying curves defined in n-dimensional spaces. We also present results that may be used to control mobile robots moving with constant speed. We devise convergence proofs and present simulations that verify the proposed approach.</description><subject>Actuators</subject><subject>Airplanes</subject><subject>Convergence</subject><subject>Limit-cycles</subject><subject>Mobile robots</subject><subject>Monitoring</subject><subject>Orbital robotics</subject><subject>Robot control</subject><subject>Robustness</subject><subject>Surveillance</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>142444523X</isbn><isbn>9781424445233</isbn><isbn>1424445248</isbn><isbn>9781424445240</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUEtLAzEYjC9wW70LXvIHUr-8m2NZfEHBi4K3kmaTEtlmS7Jd8N8bseBpBub7hplB6I7CglIwD6u2XTAAs5BUAZdwhmZUMCGEZGJ5jhrG9ZLIpaIX_wL_vEQNaMEJVdRco1kpXwDUGAUN2q_yGEN00fZ48m4cMg7R913BodI8bIcRuyFNPu98ch7b1GEXszv2doxDwkPAY9x7Mtn8HdMOu2OefMEx4US6KqRSr6p3OVjnyw26CrYv_vaEc_Tx9PjevpD12_Nru1qTSLUcibESZBBSM-ZBgQQjlWZbYMI5yZwNXDjltopaq_XvLrqrvPatHx13wOfo_s83eu83hxz3Nd7mtBn_AbJZXI8</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Goncalves, V.M.</creator><creator>Pimenta, L.</creator><creator>Maia, C.A.</creator><creator>Pereira, G.A.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200906</creationdate><title>Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces</title><author>Goncalves, V.M. ; Pimenta, L. ; Maia, C.A. ; Pereira, G.A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9a505f45722e0605095672b024cc52caf34c6cb61aa7711097d61a142572d3c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actuators</topic><topic>Airplanes</topic><topic>Convergence</topic><topic>Limit-cycles</topic><topic>Mobile robots</topic><topic>Monitoring</topic><topic>Orbital robotics</topic><topic>Robot control</topic><topic>Robustness</topic><topic>Surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Goncalves, V.M.</creatorcontrib><creatorcontrib>Pimenta, L.</creatorcontrib><creatorcontrib>Maia, C.A.</creatorcontrib><creatorcontrib>Pereira, G.A.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goncalves, V.M.</au><au>Pimenta, L.</au><au>Maia, C.A.</au><au>Pereira, G.A.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces</atitle><btitle>2009 American Control Conference</btitle><stitle>ACC</stitle><date>2009-06</date><risdate>2009</risdate><spage>2012</spage><epage>2017</epage><pages>2012-2017</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>142444523X</isbn><isbn>9781424445233</isbn><eisbn>1424445248</eisbn><eisbn>9781424445240</eisbn><abstract>This paper addresses the problem of controlling a single mobile robot to converge smoothly to a pre-specified closed curve. Once in the curve, the robot remains circulating along it. The main motivation for this is the control of unmanned airplanes, where the robot cannot converge to a single point. Our control law is based on an artificial vector field that allows for the generalization to time-varying curves defined in n-dimensional spaces. We also present results that may be used to control mobile robots moving with constant speed. We devise convergence proofs and present simulations that verify the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2009.5160350</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | 2009 American Control Conference, 2009, p.2012-2017 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_5160350 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Actuators Airplanes Convergence Limit-cycles Mobile robots Monitoring Orbital robotics Robot control Robustness Surveillance |
title | Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artificial%20vector%20fields%20for%20robot%20convergence%20and%20circulation%20of%20time-varying%20curves%20in%20n-dimensional%20spaces&rft.btitle=2009%20American%20Control%20Conference&rft.au=Goncalves,%20V.M.&rft.date=2009-06&rft.spage=2012&rft.epage=2017&rft.pages=2012-2017&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=142444523X&rft.isbn_list=9781424445233&rft_id=info:doi/10.1109/ACC.2009.5160350&rft_dat=%3Cieee_6IE%3E5160350%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424445248&rft.eisbn_list=9781424445240&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5160350&rfr_iscdi=true |