Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces

This paper addresses the problem of controlling a single mobile robot to converge smoothly to a pre-specified closed curve. Once in the curve, the robot remains circulating along it. The main motivation for this is the control of unmanned airplanes, where the robot cannot converge to a single point....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Goncalves, V.M., Pimenta, L., Maia, C.A., Pereira, G.A.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2017
container_issue
container_start_page 2012
container_title
container_volume
creator Goncalves, V.M.
Pimenta, L.
Maia, C.A.
Pereira, G.A.S.
description This paper addresses the problem of controlling a single mobile robot to converge smoothly to a pre-specified closed curve. Once in the curve, the robot remains circulating along it. The main motivation for this is the control of unmanned airplanes, where the robot cannot converge to a single point. Our control law is based on an artificial vector field that allows for the generalization to time-varying curves defined in n-dimensional spaces. We also present results that may be used to control mobile robots moving with constant speed. We devise convergence proofs and present simulations that verify the proposed approach.
doi_str_mv 10.1109/ACC.2009.5160350
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5160350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5160350</ieee_id><sourcerecordid>5160350</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9a505f45722e0605095672b024cc52caf34c6cb61aa7711097d61a142572d3c03</originalsourceid><addsrcrecordid>eNpFUEtLAzEYjC9wW70LXvIHUr-8m2NZfEHBi4K3kmaTEtlmS7Jd8N8bseBpBub7hplB6I7CglIwD6u2XTAAs5BUAZdwhmZUMCGEZGJ5jhrG9ZLIpaIX_wL_vEQNaMEJVdRco1kpXwDUGAUN2q_yGEN00fZ48m4cMg7R913BodI8bIcRuyFNPu98ch7b1GEXszv2doxDwkPAY9x7Mtn8HdMOu2OefMEx4US6KqRSr6p3OVjnyw26CrYv_vaEc_Tx9PjevpD12_Nru1qTSLUcibESZBBSM-ZBgQQjlWZbYMI5yZwNXDjltopaq_XvLrqrvPatHx13wOfo_s83eu83hxz3Nd7mtBn_AbJZXI8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Goncalves, V.M. ; Pimenta, L. ; Maia, C.A. ; Pereira, G.A.S.</creator><creatorcontrib>Goncalves, V.M. ; Pimenta, L. ; Maia, C.A. ; Pereira, G.A.S.</creatorcontrib><description>This paper addresses the problem of controlling a single mobile robot to converge smoothly to a pre-specified closed curve. Once in the curve, the robot remains circulating along it. The main motivation for this is the control of unmanned airplanes, where the robot cannot converge to a single point. Our control law is based on an artificial vector field that allows for the generalization to time-varying curves defined in n-dimensional spaces. We also present results that may be used to control mobile robots moving with constant speed. We devise convergence proofs and present simulations that verify the proposed approach.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 142444523X</identifier><identifier>ISBN: 9781424445233</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424445248</identifier><identifier>EISBN: 9781424445240</identifier><identifier>DOI: 10.1109/ACC.2009.5160350</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Airplanes ; Convergence ; Limit-cycles ; Mobile robots ; Monitoring ; Orbital robotics ; Robot control ; Robustness ; Surveillance</subject><ispartof>2009 American Control Conference, 2009, p.2012-2017</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5160350$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5160350$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goncalves, V.M.</creatorcontrib><creatorcontrib>Pimenta, L.</creatorcontrib><creatorcontrib>Maia, C.A.</creatorcontrib><creatorcontrib>Pereira, G.A.S.</creatorcontrib><title>Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces</title><title>2009 American Control Conference</title><addtitle>ACC</addtitle><description>This paper addresses the problem of controlling a single mobile robot to converge smoothly to a pre-specified closed curve. Once in the curve, the robot remains circulating along it. The main motivation for this is the control of unmanned airplanes, where the robot cannot converge to a single point. Our control law is based on an artificial vector field that allows for the generalization to time-varying curves defined in n-dimensional spaces. We also present results that may be used to control mobile robots moving with constant speed. We devise convergence proofs and present simulations that verify the proposed approach.</description><subject>Actuators</subject><subject>Airplanes</subject><subject>Convergence</subject><subject>Limit-cycles</subject><subject>Mobile robots</subject><subject>Monitoring</subject><subject>Orbital robotics</subject><subject>Robot control</subject><subject>Robustness</subject><subject>Surveillance</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>142444523X</isbn><isbn>9781424445233</isbn><isbn>1424445248</isbn><isbn>9781424445240</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUEtLAzEYjC9wW70LXvIHUr-8m2NZfEHBi4K3kmaTEtlmS7Jd8N8bseBpBub7hplB6I7CglIwD6u2XTAAs5BUAZdwhmZUMCGEZGJ5jhrG9ZLIpaIX_wL_vEQNaMEJVdRco1kpXwDUGAUN2q_yGEN00fZ48m4cMg7R913BodI8bIcRuyFNPu98ch7b1GEXszv2doxDwkPAY9x7Mtn8HdMOu2OefMEx4US6KqRSr6p3OVjnyw26CrYv_vaEc_Tx9PjevpD12_Nru1qTSLUcibESZBBSM-ZBgQQjlWZbYMI5yZwNXDjltopaq_XvLrqrvPatHx13wOfo_s83eu83hxz3Nd7mtBn_AbJZXI8</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Goncalves, V.M.</creator><creator>Pimenta, L.</creator><creator>Maia, C.A.</creator><creator>Pereira, G.A.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200906</creationdate><title>Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces</title><author>Goncalves, V.M. ; Pimenta, L. ; Maia, C.A. ; Pereira, G.A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9a505f45722e0605095672b024cc52caf34c6cb61aa7711097d61a142572d3c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actuators</topic><topic>Airplanes</topic><topic>Convergence</topic><topic>Limit-cycles</topic><topic>Mobile robots</topic><topic>Monitoring</topic><topic>Orbital robotics</topic><topic>Robot control</topic><topic>Robustness</topic><topic>Surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Goncalves, V.M.</creatorcontrib><creatorcontrib>Pimenta, L.</creatorcontrib><creatorcontrib>Maia, C.A.</creatorcontrib><creatorcontrib>Pereira, G.A.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goncalves, V.M.</au><au>Pimenta, L.</au><au>Maia, C.A.</au><au>Pereira, G.A.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces</atitle><btitle>2009 American Control Conference</btitle><stitle>ACC</stitle><date>2009-06</date><risdate>2009</risdate><spage>2012</spage><epage>2017</epage><pages>2012-2017</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>142444523X</isbn><isbn>9781424445233</isbn><eisbn>1424445248</eisbn><eisbn>9781424445240</eisbn><abstract>This paper addresses the problem of controlling a single mobile robot to converge smoothly to a pre-specified closed curve. Once in the curve, the robot remains circulating along it. The main motivation for this is the control of unmanned airplanes, where the robot cannot converge to a single point. Our control law is based on an artificial vector field that allows for the generalization to time-varying curves defined in n-dimensional spaces. We also present results that may be used to control mobile robots moving with constant speed. We devise convergence proofs and present simulations that verify the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2009.5160350</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2009 American Control Conference, 2009, p.2012-2017
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_5160350
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Actuators
Airplanes
Convergence
Limit-cycles
Mobile robots
Monitoring
Orbital robotics
Robot control
Robustness
Surveillance
title Artificial vector fields for robot convergence and circulation of time-varying curves in n-dimensional spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artificial%20vector%20fields%20for%20robot%20convergence%20and%20circulation%20of%20time-varying%20curves%20in%20n-dimensional%20spaces&rft.btitle=2009%20American%20Control%20Conference&rft.au=Goncalves,%20V.M.&rft.date=2009-06&rft.spage=2012&rft.epage=2017&rft.pages=2012-2017&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=142444523X&rft.isbn_list=9781424445233&rft_id=info:doi/10.1109/ACC.2009.5160350&rft_dat=%3Cieee_6IE%3E5160350%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424445248&rft.eisbn_list=9781424445240&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5160350&rfr_iscdi=true