Stability analysis of heat exchanger dynamics
In the study of vapor compression cycle, momentum balance equation is often ignored in the heat exchanger model. In this paper, we investigate the effect of the momentum balance through a systematic study of the open loop stability of a heat exchanger. We consider 1-D fluid flow in a pipe in four ca...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3661 |
---|---|
container_issue | |
container_start_page | 3656 |
container_title | |
container_volume | |
creator | Tiejun Zhang Wen, J.T. Catano, J. Rongliang Zhou |
description | In the study of vapor compression cycle, momentum balance equation is often ignored in the heat exchanger model. In this paper, we investigate the effect of the momentum balance through a systematic study of the open loop stability of a heat exchanger. We consider 1-D fluid flow in a pipe in four cases of increasing complexity the most general case corresponds to the heat exchanger model: 1. incompressible flow without heat transfer; 2. incompressible flow with heat transfer; 3. compressible flow without heat transfer; 4. compressible flow with heat transfer. Among the three balance equations, mass, momentum, and energy, case 1 involves only the momentum, case 2 involves both momentum and energy, case 3 involves mass and momentum, and case 4 requires all three equations. It is shown that in cases 1, which corresponding to the incompressible flow without heat input, the system is lumped and always stable, and in cases 2, 3 and 4, the system is stable if and only if the equilibrium flow velocity is sufficiently high. Finite difference approximation and linearization of the dynamic models are used for local stability evaluation in case 3 and 4. The overall cycle analysis as well as a simulation example is also included. The result of this study now forms the foundation to investigate the open loop stability and closed loop control design for vapor compression cycles used in HVAC and electronic cooling systems. |
doi_str_mv | 10.1109/ACC.2009.5160282 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5160282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5160282</ieee_id><sourcerecordid>5160282</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c0a7bc5970d6c4504660ad28c8b01e910faa97f8b75f52ab6292960fa30338803</originalsourceid><addsrcrecordid>eNpFj0tLxDAURuML7IzuBTf9A6n35p3lUHzBgAsV3A23aeJEOqM0Xdh_r-CAq29x4HA-xq4QGkTwN6u2bQSAbzQaEE4csQUqoZTSQrljVglpHdfO4Mk_kG-nrAKrJEeD_pwtSvkAQO8NVIw_T9TlIU9zTXsa5pJL_ZnqbaSpjt9hS_v3ONb9vKddDuWCnSUaSrw87JK93t2-tA98_XT_2K7WPKPVEw9AtgvaW-hNUBqUMUC9cMF1gNEjJCJvk-usTlpQZ4QXvzWJJEjpHMglu_7z5hjj5mvMOxrnzeGz_AHdLkUD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stability analysis of heat exchanger dynamics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tiejun Zhang ; Wen, J.T. ; Catano, J. ; Rongliang Zhou</creator><creatorcontrib>Tiejun Zhang ; Wen, J.T. ; Catano, J. ; Rongliang Zhou</creatorcontrib><description>In the study of vapor compression cycle, momentum balance equation is often ignored in the heat exchanger model. In this paper, we investigate the effect of the momentum balance through a systematic study of the open loop stability of a heat exchanger. We consider 1-D fluid flow in a pipe in four cases of increasing complexity the most general case corresponds to the heat exchanger model: 1. incompressible flow without heat transfer; 2. incompressible flow with heat transfer; 3. compressible flow without heat transfer; 4. compressible flow with heat transfer. Among the three balance equations, mass, momentum, and energy, case 1 involves only the momentum, case 2 involves both momentum and energy, case 3 involves mass and momentum, and case 4 requires all three equations. It is shown that in cases 1, which corresponding to the incompressible flow without heat input, the system is lumped and always stable, and in cases 2, 3 and 4, the system is stable if and only if the equilibrium flow velocity is sufficiently high. Finite difference approximation and linearization of the dynamic models are used for local stability evaluation in case 3 and 4. The overall cycle analysis as well as a simulation example is also included. The result of this study now forms the foundation to investigate the open loop stability and closed loop control design for vapor compression cycles used in HVAC and electronic cooling systems.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 142444523X</identifier><identifier>ISBN: 9781424445233</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424445248</identifier><identifier>EISBN: 9781424445240</identifier><identifier>DOI: 10.1109/ACC.2009.5160282</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Control design ; Electronics cooling ; Equations ; Finite difference methods ; Fluid dynamics ; Fluid flow ; Heat transfer ; Linear approximation ; Stability analysis</subject><ispartof>2009 American Control Conference, 2009, p.3656-3661</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5160282$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5160282$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tiejun Zhang</creatorcontrib><creatorcontrib>Wen, J.T.</creatorcontrib><creatorcontrib>Catano, J.</creatorcontrib><creatorcontrib>Rongliang Zhou</creatorcontrib><title>Stability analysis of heat exchanger dynamics</title><title>2009 American Control Conference</title><addtitle>ACC</addtitle><description>In the study of vapor compression cycle, momentum balance equation is often ignored in the heat exchanger model. In this paper, we investigate the effect of the momentum balance through a systematic study of the open loop stability of a heat exchanger. We consider 1-D fluid flow in a pipe in four cases of increasing complexity the most general case corresponds to the heat exchanger model: 1. incompressible flow without heat transfer; 2. incompressible flow with heat transfer; 3. compressible flow without heat transfer; 4. compressible flow with heat transfer. Among the three balance equations, mass, momentum, and energy, case 1 involves only the momentum, case 2 involves both momentum and energy, case 3 involves mass and momentum, and case 4 requires all three equations. It is shown that in cases 1, which corresponding to the incompressible flow without heat input, the system is lumped and always stable, and in cases 2, 3 and 4, the system is stable if and only if the equilibrium flow velocity is sufficiently high. Finite difference approximation and linearization of the dynamic models are used for local stability evaluation in case 3 and 4. The overall cycle analysis as well as a simulation example is also included. The result of this study now forms the foundation to investigate the open loop stability and closed loop control design for vapor compression cycles used in HVAC and electronic cooling systems.</description><subject>Analytical models</subject><subject>Control design</subject><subject>Electronics cooling</subject><subject>Equations</subject><subject>Finite difference methods</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Linear approximation</subject><subject>Stability analysis</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>142444523X</isbn><isbn>9781424445233</isbn><isbn>1424445248</isbn><isbn>9781424445240</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0tLxDAURuML7IzuBTf9A6n35p3lUHzBgAsV3A23aeJEOqM0Xdh_r-CAq29x4HA-xq4QGkTwN6u2bQSAbzQaEE4csQUqoZTSQrljVglpHdfO4Mk_kG-nrAKrJEeD_pwtSvkAQO8NVIw_T9TlIU9zTXsa5pJL_ZnqbaSpjt9hS_v3ONb9vKddDuWCnSUaSrw87JK93t2-tA98_XT_2K7WPKPVEw9AtgvaW-hNUBqUMUC9cMF1gNEjJCJvk-usTlpQZ4QXvzWJJEjpHMglu_7z5hjj5mvMOxrnzeGz_AHdLkUD</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Tiejun Zhang</creator><creator>Wen, J.T.</creator><creator>Catano, J.</creator><creator>Rongliang Zhou</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200906</creationdate><title>Stability analysis of heat exchanger dynamics</title><author>Tiejun Zhang ; Wen, J.T. ; Catano, J. ; Rongliang Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c0a7bc5970d6c4504660ad28c8b01e910faa97f8b75f52ab6292960fa30338803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical models</topic><topic>Control design</topic><topic>Electronics cooling</topic><topic>Equations</topic><topic>Finite difference methods</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Linear approximation</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Tiejun Zhang</creatorcontrib><creatorcontrib>Wen, J.T.</creatorcontrib><creatorcontrib>Catano, J.</creatorcontrib><creatorcontrib>Rongliang Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tiejun Zhang</au><au>Wen, J.T.</au><au>Catano, J.</au><au>Rongliang Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stability analysis of heat exchanger dynamics</atitle><btitle>2009 American Control Conference</btitle><stitle>ACC</stitle><date>2009-06</date><risdate>2009</risdate><spage>3656</spage><epage>3661</epage><pages>3656-3661</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>142444523X</isbn><isbn>9781424445233</isbn><eisbn>1424445248</eisbn><eisbn>9781424445240</eisbn><abstract>In the study of vapor compression cycle, momentum balance equation is often ignored in the heat exchanger model. In this paper, we investigate the effect of the momentum balance through a systematic study of the open loop stability of a heat exchanger. We consider 1-D fluid flow in a pipe in four cases of increasing complexity the most general case corresponds to the heat exchanger model: 1. incompressible flow without heat transfer; 2. incompressible flow with heat transfer; 3. compressible flow without heat transfer; 4. compressible flow with heat transfer. Among the three balance equations, mass, momentum, and energy, case 1 involves only the momentum, case 2 involves both momentum and energy, case 3 involves mass and momentum, and case 4 requires all three equations. It is shown that in cases 1, which corresponding to the incompressible flow without heat input, the system is lumped and always stable, and in cases 2, 3 and 4, the system is stable if and only if the equilibrium flow velocity is sufficiently high. Finite difference approximation and linearization of the dynamic models are used for local stability evaluation in case 3 and 4. The overall cycle analysis as well as a simulation example is also included. The result of this study now forms the foundation to investigate the open loop stability and closed loop control design for vapor compression cycles used in HVAC and electronic cooling systems.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2009.5160282</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | 2009 American Control Conference, 2009, p.3656-3661 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_5160282 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Control design Electronics cooling Equations Finite difference methods Fluid dynamics Fluid flow Heat transfer Linear approximation Stability analysis |
title | Stability analysis of heat exchanger dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stability%20analysis%20of%20heat%20exchanger%20dynamics&rft.btitle=2009%20American%20Control%20Conference&rft.au=Tiejun%20Zhang&rft.date=2009-06&rft.spage=3656&rft.epage=3661&rft.pages=3656-3661&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=142444523X&rft.isbn_list=9781424445233&rft_id=info:doi/10.1109/ACC.2009.5160282&rft_dat=%3Cieee_6IE%3E5160282%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424445248&rft.eisbn_list=9781424445240&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5160282&rfr_iscdi=true |