Probabilistically-robust performance optimization for controlled linear stochastic systems

This study discusses a robust controller synthesis methodology for linear time invariant systems characterized by probabilistic parameter uncertainty. The optimization of the robust performance is considered. The extension of pre-existing, synthesis approaches, such as multi-objective H 2 design, to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Taflanidis, A.A., Scruggs, J.T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4562
container_issue
container_start_page 4557
container_title
container_volume
creator Taflanidis, A.A.
Scruggs, J.T.
description This study discusses a robust controller synthesis methodology for linear time invariant systems characterized by probabilistic parameter uncertainty. The optimization of the robust performance is considered. The extension of pre-existing, synthesis approaches, such as multi-objective H 2 design, to account for probabilistic uncertainty is investigated. A design based on the concept of the reliability of the system response output is also considered. Analysis and synthesis methodologies based on stochastic simulation techniques are discussed. The design approach is applied in a structural control example. The results illustrate the differences between the various probabilistic performance objectives and the importance of adopting a probabilistic characterization for model uncertainty when compared to nominal design or to the design using a worst-case scenario approach.
doi_str_mv 10.1109/ACC.2009.5160249
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5160249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5160249</ieee_id><sourcerecordid>5160249</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-19e2acc7b732c0ec74cdb9470b2281986f41abe18bb204ea3f6af831fed95fde3</originalsourceid><addsrcrecordid>eNpFkM1KAzEYReMf2Fb3gpu8wNR8SWYyWZbBPyjoQkHclCTzDUYyk5LERX16KxZcXTgXzuIQcgVsCcD0zarrlpwxvayhYVzqIzIHyaWUNZftMZlxodqqbhs4-T_E2ymZMSVFBQ3oczLP-ZMx0LphM_L-nKI11gefi3cmhF21B1-50C2mIabRTA5p3BY_-m9TfJzonlIXp5JiCNjT4Cc0ieYS3Yf5ldC8ywXHfEHOBhMyXh52QV7vbl-6h2r9dP_YrdaVB1WXCjRy45yySnDH0CnpequlYpbzFnTbDBKMRWit5UyiEUNjhlbAgL2uhx7Fglz_eT0ibrbJjybtNodA4geJ0lkf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistically-robust performance optimization for controlled linear stochastic systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Taflanidis, A.A. ; Scruggs, J.T.</creator><creatorcontrib>Taflanidis, A.A. ; Scruggs, J.T.</creatorcontrib><description>This study discusses a robust controller synthesis methodology for linear time invariant systems characterized by probabilistic parameter uncertainty. The optimization of the robust performance is considered. The extension of pre-existing, synthesis approaches, such as multi-objective H 2 design, to account for probabilistic uncertainty is investigated. A design based on the concept of the reliability of the system response output is also considered. Analysis and synthesis methodologies based on stochastic simulation techniques are discussed. The design approach is applied in a structural control example. The results illustrate the differences between the various probabilistic performance objectives and the importance of adopting a probabilistic characterization for model uncertainty when compared to nominal design or to the design using a worst-case scenario approach.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 142444523X</identifier><identifier>ISBN: 9781424445233</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424445248</identifier><identifier>EISBN: 9781424445240</identifier><identifier>DOI: 10.1109/ACC.2009.5160249</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control system synthesis ; Control systems ; Optimization ; Robust control ; Robustness ; Stochastic processes ; Stochastic systems ; Time invariant systems ; Uncertain systems ; Uncertainty</subject><ispartof>2009 American Control Conference, 2009, p.4557-4562</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5160249$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5160249$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taflanidis, A.A.</creatorcontrib><creatorcontrib>Scruggs, J.T.</creatorcontrib><title>Probabilistically-robust performance optimization for controlled linear stochastic systems</title><title>2009 American Control Conference</title><addtitle>ACC</addtitle><description>This study discusses a robust controller synthesis methodology for linear time invariant systems characterized by probabilistic parameter uncertainty. The optimization of the robust performance is considered. The extension of pre-existing, synthesis approaches, such as multi-objective H 2 design, to account for probabilistic uncertainty is investigated. A design based on the concept of the reliability of the system response output is also considered. Analysis and synthesis methodologies based on stochastic simulation techniques are discussed. The design approach is applied in a structural control example. The results illustrate the differences between the various probabilistic performance objectives and the importance of adopting a probabilistic characterization for model uncertainty when compared to nominal design or to the design using a worst-case scenario approach.</description><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Optimization</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Time invariant systems</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>142444523X</isbn><isbn>9781424445233</isbn><isbn>1424445248</isbn><isbn>9781424445240</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1KAzEYReMf2Fb3gpu8wNR8SWYyWZbBPyjoQkHclCTzDUYyk5LERX16KxZcXTgXzuIQcgVsCcD0zarrlpwxvayhYVzqIzIHyaWUNZftMZlxodqqbhs4-T_E2ymZMSVFBQ3oczLP-ZMx0LphM_L-nKI11gefi3cmhF21B1-50C2mIabRTA5p3BY_-m9TfJzonlIXp5JiCNjT4Cc0ieYS3Yf5ldC8ywXHfEHOBhMyXh52QV7vbl-6h2r9dP_YrdaVB1WXCjRy45yySnDH0CnpequlYpbzFnTbDBKMRWit5UyiEUNjhlbAgL2uhx7Fglz_eT0ibrbJjybtNodA4geJ0lkf</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Taflanidis, A.A.</creator><creator>Scruggs, J.T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200906</creationdate><title>Probabilistically-robust performance optimization for controlled linear stochastic systems</title><author>Taflanidis, A.A. ; Scruggs, J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-19e2acc7b732c0ec74cdb9470b2281986f41abe18bb204ea3f6af831fed95fde3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Optimization</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Time invariant systems</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Taflanidis, A.A.</creatorcontrib><creatorcontrib>Scruggs, J.T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taflanidis, A.A.</au><au>Scruggs, J.T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistically-robust performance optimization for controlled linear stochastic systems</atitle><btitle>2009 American Control Conference</btitle><stitle>ACC</stitle><date>2009-06</date><risdate>2009</risdate><spage>4557</spage><epage>4562</epage><pages>4557-4562</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>142444523X</isbn><isbn>9781424445233</isbn><eisbn>1424445248</eisbn><eisbn>9781424445240</eisbn><abstract>This study discusses a robust controller synthesis methodology for linear time invariant systems characterized by probabilistic parameter uncertainty. The optimization of the robust performance is considered. The extension of pre-existing, synthesis approaches, such as multi-objective H 2 design, to account for probabilistic uncertainty is investigated. A design based on the concept of the reliability of the system response output is also considered. Analysis and synthesis methodologies based on stochastic simulation techniques are discussed. The design approach is applied in a structural control example. The results illustrate the differences between the various probabilistic performance objectives and the importance of adopting a probabilistic characterization for model uncertainty when compared to nominal design or to the design using a worst-case scenario approach.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2009.5160249</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2009 American Control Conference, 2009, p.4557-4562
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_5160249
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control system synthesis
Control systems
Optimization
Robust control
Robustness
Stochastic processes
Stochastic systems
Time invariant systems
Uncertain systems
Uncertainty
title Probabilistically-robust performance optimization for controlled linear stochastic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistically-robust%20performance%20optimization%20for%20controlled%20linear%20stochastic%20systems&rft.btitle=2009%20American%20Control%20Conference&rft.au=Taflanidis,%20A.A.&rft.date=2009-06&rft.spage=4557&rft.epage=4562&rft.pages=4557-4562&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=142444523X&rft.isbn_list=9781424445233&rft_id=info:doi/10.1109/ACC.2009.5160249&rft_dat=%3Cieee_6IE%3E5160249%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424445248&rft.eisbn_list=9781424445240&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5160249&rfr_iscdi=true