Gray Intensity Images Processing for PD Pattern Recognition Based on Genetic Programming
Partial discharge (PD) gray intensity image is regarded as the research object in this paper, a new principle and method based on genetic programming is proposed to extract PD features aiming at PRPD mode, This article firstly introduces the PRPD mode and the method to get the three-dimensional spec...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 714 |
---|---|
container_issue | |
container_start_page | 711 |
container_title | |
container_volume | |
creator | Suo Xuesong Yuhong Zhou |
description | Partial discharge (PD) gray intensity image is regarded as the research object in this paper, a new principle and method based on genetic programming is proposed to extract PD features aiming at PRPD mode, This article firstly introduces the PRPD mode and the method to get the three-dimensional spectrum and two-dimensional gray intensity image, then gray intensity images identification technology based on genetic programming is introduced, Furthermore, the paper presents software flow chart of search algorithm of gray intensity image recognition. Finally, the results of experiment are given. Compared with the original image recognition technology, this method provides an effective pathway for the better recognition in image information, Using this method, the storage requirement and the calculation involved may be reduced, the results show that it is effective. |
doi_str_mv | 10.1109/JCAI.2009.74 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5159102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5159102</ieee_id><sourcerecordid>5159102</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d210d5117e7d0ce1d679bcc80c3570bdc3cea966163cc0379efa810f0fa376c73</originalsourceid><addsrcrecordid>eNotjEFLAzEUhANSUGtv3rzkD3R9r2mSzbGuuq4ULKLgraTZt0vEzUqSS_-9W-pcZpjhG8ZuEQpEMPev1aYpVgCm0OsLtjC6BK2MFAqlmrHr02IA1mV5yRYpfcMkKfXUXbGvOtojb0KmkHye0mB7SnwXR0cp-dDzbox898h3NmeKgb-TG_vgsx8Df7CJWj6FmgJl705YH-0wTNwNm3X2J9Hi3-fs8_npo3pZbt_qptpslx61zMt2hdBKRE26BUfYKm0OzpXghNRwaJ1wZI1SqIRzILShzpYIHXRWaOW0mLO7868nov1v9IONx71EaRBW4g_0eVIO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gray Intensity Images Processing for PD Pattern Recognition Based on Genetic Programming</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Suo Xuesong ; Yuhong Zhou</creator><creatorcontrib>Suo Xuesong ; Yuhong Zhou</creatorcontrib><description>Partial discharge (PD) gray intensity image is regarded as the research object in this paper, a new principle and method based on genetic programming is proposed to extract PD features aiming at PRPD mode, This article firstly introduces the PRPD mode and the method to get the three-dimensional spectrum and two-dimensional gray intensity image, then gray intensity images identification technology based on genetic programming is introduced, Furthermore, the paper presents software flow chart of search algorithm of gray intensity image recognition. Finally, the results of experiment are given. Compared with the original image recognition technology, this method provides an effective pathway for the better recognition in image information, Using this method, the storage requirement and the calculation involved may be reduced, the results show that it is effective.</description><identifier>ISBN: 9780769536156</identifier><identifier>ISBN: 0769536158</identifier><identifier>DOI: 10.1109/JCAI.2009.74</identifier><identifier>LCCN: 2009900488</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Frequency ; Genetic programming ; Image processing ; Image recognition ; Image storage ; Partial discharges ; Pattern recognition ; PRPD mode ; Pulse power systems ; Signal processing ; Template matching</subject><ispartof>2009 International Joint Conference on Artificial Intelligence, 2009, p.711-714</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5159102$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5159102$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suo Xuesong</creatorcontrib><creatorcontrib>Yuhong Zhou</creatorcontrib><title>Gray Intensity Images Processing for PD Pattern Recognition Based on Genetic Programming</title><title>2009 International Joint Conference on Artificial Intelligence</title><addtitle>JCAI</addtitle><description>Partial discharge (PD) gray intensity image is regarded as the research object in this paper, a new principle and method based on genetic programming is proposed to extract PD features aiming at PRPD mode, This article firstly introduces the PRPD mode and the method to get the three-dimensional spectrum and two-dimensional gray intensity image, then gray intensity images identification technology based on genetic programming is introduced, Furthermore, the paper presents software flow chart of search algorithm of gray intensity image recognition. Finally, the results of experiment are given. Compared with the original image recognition technology, this method provides an effective pathway for the better recognition in image information, Using this method, the storage requirement and the calculation involved may be reduced, the results show that it is effective.</description><subject>Data mining</subject><subject>Frequency</subject><subject>Genetic programming</subject><subject>Image processing</subject><subject>Image recognition</subject><subject>Image storage</subject><subject>Partial discharges</subject><subject>Pattern recognition</subject><subject>PRPD mode</subject><subject>Pulse power systems</subject><subject>Signal processing</subject><subject>Template matching</subject><isbn>9780769536156</isbn><isbn>0769536158</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEFLAzEUhANSUGtv3rzkD3R9r2mSzbGuuq4ULKLgraTZt0vEzUqSS_-9W-pcZpjhG8ZuEQpEMPev1aYpVgCm0OsLtjC6BK2MFAqlmrHr02IA1mV5yRYpfcMkKfXUXbGvOtojb0KmkHye0mB7SnwXR0cp-dDzbox898h3NmeKgb-TG_vgsx8Df7CJWj6FmgJl705YH-0wTNwNm3X2J9Hi3-fs8_npo3pZbt_qptpslx61zMt2hdBKRE26BUfYKm0OzpXghNRwaJ1wZI1SqIRzILShzpYIHXRWaOW0mLO7868nov1v9IONx71EaRBW4g_0eVIO</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Suo Xuesong</creator><creator>Yuhong Zhou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200904</creationdate><title>Gray Intensity Images Processing for PD Pattern Recognition Based on Genetic Programming</title><author>Suo Xuesong ; Yuhong Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d210d5117e7d0ce1d679bcc80c3570bdc3cea966163cc0379efa810f0fa376c73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Data mining</topic><topic>Frequency</topic><topic>Genetic programming</topic><topic>Image processing</topic><topic>Image recognition</topic><topic>Image storage</topic><topic>Partial discharges</topic><topic>Pattern recognition</topic><topic>PRPD mode</topic><topic>Pulse power systems</topic><topic>Signal processing</topic><topic>Template matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suo Xuesong</creatorcontrib><creatorcontrib>Yuhong Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suo Xuesong</au><au>Yuhong Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gray Intensity Images Processing for PD Pattern Recognition Based on Genetic Programming</atitle><btitle>2009 International Joint Conference on Artificial Intelligence</btitle><stitle>JCAI</stitle><date>2009-04</date><risdate>2009</risdate><spage>711</spage><epage>714</epage><pages>711-714</pages><isbn>9780769536156</isbn><isbn>0769536158</isbn><abstract>Partial discharge (PD) gray intensity image is regarded as the research object in this paper, a new principle and method based on genetic programming is proposed to extract PD features aiming at PRPD mode, This article firstly introduces the PRPD mode and the method to get the three-dimensional spectrum and two-dimensional gray intensity image, then gray intensity images identification technology based on genetic programming is introduced, Furthermore, the paper presents software flow chart of search algorithm of gray intensity image recognition. Finally, the results of experiment are given. Compared with the original image recognition technology, this method provides an effective pathway for the better recognition in image information, Using this method, the storage requirement and the calculation involved may be reduced, the results show that it is effective.</abstract><pub>IEEE</pub><doi>10.1109/JCAI.2009.74</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769536156 |
ispartof | 2009 International Joint Conference on Artificial Intelligence, 2009, p.711-714 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5159102 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data mining Frequency Genetic programming Image processing Image recognition Image storage Partial discharges Pattern recognition PRPD mode Pulse power systems Signal processing Template matching |
title | Gray Intensity Images Processing for PD Pattern Recognition Based on Genetic Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gray%20Intensity%20Images%20Processing%20for%20PD%20Pattern%20Recognition%20Based%20on%20Genetic%20Programming&rft.btitle=2009%20International%20Joint%20Conference%20on%20Artificial%20Intelligence&rft.au=Suo%20Xuesong&rft.date=2009-04&rft.spage=711&rft.epage=714&rft.pages=711-714&rft.isbn=9780769536156&rft.isbn_list=0769536158&rft_id=info:doi/10.1109/JCAI.2009.74&rft_dat=%3Cieee_6IE%3E5159102%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5159102&rfr_iscdi=true |