Centralized fusion for fast people detection in dense environment

Human beings do not have well defined shapes neither well defined behaviors. In dense outdoor environments, they are as a consequence hard to detect and algorithms based on a single sensor tend to produce lot of wrong detections. Moreover, many applications require algorithms that work very fast on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gate, G., Breheret, A., Nashashibi, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue
container_start_page 76
container_title
container_volume
creator Gate, G.
Breheret, A.
Nashashibi, F.
description Human beings do not have well defined shapes neither well defined behaviors. In dense outdoor environments, they are as a consequence hard to detect and algorithms based on a single sensor tend to produce lot of wrong detections. Moreover, many applications require algorithms that work very fast on CPU limited mobile architectures while remaining able to detect, track and classify objects as people with a very high precision. We present an algorithm based on the contribution of a range finder and a vision based algorithm that addresses these three constraints: efficiency, velocity and robustness and that we believe is scalable to a large variety of applications.
doi_str_mv 10.1109/ROBOT.2009.5152645
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5152645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5152645</ieee_id><sourcerecordid>5152645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-6c43f5290d8e66467cf58fd55b494225c0a3c7eb7098b8bc3a850e02e08e7d6b3</originalsourceid><addsrcrecordid>eNpFkNtKw0AURcdLwVj7A_qSH0g8czlzeazBGxQCUsG3kkzOQCRNQiYK-vVWLPi02SzWftiMXXPIOQd3-1LeldtcALgcOQqt8IRdciWUEsY6dcoSgcZkYM3b2T-w-pwlHBAyZYRbsMRBphVwtBdsFeM7AHCjleQyYeuC-nmquvabmjR8xHbo0zBMaajinI40jB2lDc3k51_S9ofSR0qp_2ynod8f5Cu2CFUXaXXMJXt9uN8WT9mmfHwu1pvMC8A5017JgMJBY0lrpY0PaEODWCunhEAPlfSGagPO1rb2srIIBILAkml0LZfs5m-3JaLdOLX7avraHW-RP6fvUG0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Centralized fusion for fast people detection in dense environment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gate, G. ; Breheret, A. ; Nashashibi, F.</creator><creatorcontrib>Gate, G. ; Breheret, A. ; Nashashibi, F.</creatorcontrib><description>Human beings do not have well defined shapes neither well defined behaviors. In dense outdoor environments, they are as a consequence hard to detect and algorithms based on a single sensor tend to produce lot of wrong detections. Moreover, many applications require algorithms that work very fast on CPU limited mobile architectures while remaining able to detect, track and classify objects as people with a very high precision. We present an algorithm based on the contribution of a range finder and a vision based algorithm that addresses these three constraints: efficiency, velocity and robustness and that we believe is scalable to a large variety of applications.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424427886</identifier><identifier>ISBN: 9781424427888</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1424427894</identifier><identifier>EISBN: 9781424427895</identifier><identifier>DOI: 10.1109/ROBOT.2009.5152645</identifier><identifier>LCCN: 90-640158</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Boosting ; Cameras ; Data fusion ; Detection algorithms ; Humans ; Laser fusion ; People detection ; Recursive estimation ; Robots ; Robustness ; Shape ; Target tracking</subject><ispartof>2009 IEEE International Conference on Robotics and Automation, 2009, p.76-81</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c205t-6c43f5290d8e66467cf58fd55b494225c0a3c7eb7098b8bc3a850e02e08e7d6b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5152645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5152645$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gate, G.</creatorcontrib><creatorcontrib>Breheret, A.</creatorcontrib><creatorcontrib>Nashashibi, F.</creatorcontrib><title>Centralized fusion for fast people detection in dense environment</title><title>2009 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>Human beings do not have well defined shapes neither well defined behaviors. In dense outdoor environments, they are as a consequence hard to detect and algorithms based on a single sensor tend to produce lot of wrong detections. Moreover, many applications require algorithms that work very fast on CPU limited mobile architectures while remaining able to detect, track and classify objects as people with a very high precision. We present an algorithm based on the contribution of a range finder and a vision based algorithm that addresses these three constraints: efficiency, velocity and robustness and that we believe is scalable to a large variety of applications.</description><subject>Bayesian methods</subject><subject>Boosting</subject><subject>Cameras</subject><subject>Data fusion</subject><subject>Detection algorithms</subject><subject>Humans</subject><subject>Laser fusion</subject><subject>People detection</subject><subject>Recursive estimation</subject><subject>Robots</subject><subject>Robustness</subject><subject>Shape</subject><subject>Target tracking</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424427886</isbn><isbn>9781424427888</isbn><isbn>1424427894</isbn><isbn>9781424427895</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkNtKw0AURcdLwVj7A_qSH0g8czlzeazBGxQCUsG3kkzOQCRNQiYK-vVWLPi02SzWftiMXXPIOQd3-1LeldtcALgcOQqt8IRdciWUEsY6dcoSgcZkYM3b2T-w-pwlHBAyZYRbsMRBphVwtBdsFeM7AHCjleQyYeuC-nmquvabmjR8xHbo0zBMaajinI40jB2lDc3k51_S9ofSR0qp_2ynod8f5Cu2CFUXaXXMJXt9uN8WT9mmfHwu1pvMC8A5017JgMJBY0lrpY0PaEODWCunhEAPlfSGagPO1rb2srIIBILAkml0LZfs5m-3JaLdOLX7avraHW-RP6fvUG0</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Gate, G.</creator><creator>Breheret, A.</creator><creator>Nashashibi, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200905</creationdate><title>Centralized fusion for fast people detection in dense environment</title><author>Gate, G. ; Breheret, A. ; Nashashibi, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-6c43f5290d8e66467cf58fd55b494225c0a3c7eb7098b8bc3a850e02e08e7d6b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bayesian methods</topic><topic>Boosting</topic><topic>Cameras</topic><topic>Data fusion</topic><topic>Detection algorithms</topic><topic>Humans</topic><topic>Laser fusion</topic><topic>People detection</topic><topic>Recursive estimation</topic><topic>Robots</topic><topic>Robustness</topic><topic>Shape</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Gate, G.</creatorcontrib><creatorcontrib>Breheret, A.</creatorcontrib><creatorcontrib>Nashashibi, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gate, G.</au><au>Breheret, A.</au><au>Nashashibi, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Centralized fusion for fast people detection in dense environment</atitle><btitle>2009 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2009-05</date><risdate>2009</risdate><spage>76</spage><epage>81</epage><pages>76-81</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424427886</isbn><isbn>9781424427888</isbn><eisbn>1424427894</eisbn><eisbn>9781424427895</eisbn><abstract>Human beings do not have well defined shapes neither well defined behaviors. In dense outdoor environments, they are as a consequence hard to detect and algorithms based on a single sensor tend to produce lot of wrong detections. Moreover, many applications require algorithms that work very fast on CPU limited mobile architectures while remaining able to detect, track and classify objects as people with a very high precision. We present an algorithm based on the contribution of a range finder and a vision based algorithm that addresses these three constraints: efficiency, velocity and robustness and that we believe is scalable to a large variety of applications.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2009.5152645</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2009 IEEE International Conference on Robotics and Automation, 2009, p.76-81
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_5152645
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Boosting
Cameras
Data fusion
Detection algorithms
Humans
Laser fusion
People detection
Recursive estimation
Robots
Robustness
Shape
Target tracking
title Centralized fusion for fast people detection in dense environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Centralized%20fusion%20for%20fast%20people%20detection%20in%20dense%20environment&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Gate,%20G.&rft.date=2009-05&rft.spage=76&rft.epage=81&rft.pages=76-81&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424427886&rft.isbn_list=9781424427888&rft_id=info:doi/10.1109/ROBOT.2009.5152645&rft_dat=%3Cieee_6IE%3E5152645%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424427894&rft.eisbn_list=9781424427895&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5152645&rfr_iscdi=true