Unsupervised learning of 3D object models from partial views

We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans. Models learned from the objects are represented as point clouds. Our approach can deal with partial views and it can robustly learn accurate model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ruhnke, M., Steder, B., Grisetti, G., Burgard, W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 806
container_issue
container_start_page 801
container_title
container_volume
creator Ruhnke, M.
Steder, B.
Grisetti, G.
Burgard, W.
description We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans. Models learned from the objects are represented as point clouds. Our approach can deal with partial views and it can robustly learn accurate models from complex scenes. It is based on an iterative matching procedure which attempts to recursively merge similar models. The alignment between models is determined using a novel scan registration procedure based on range images. The decision about which models to merge is performed by spectral clustering of a similarity matrix whose entries represent the consistency between different models.
doi_str_mv 10.1109/ROBOT.2009.5152524
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5152524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5152524</ieee_id><sourcerecordid>5152524</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1344-19104feb0c7426febd721bb8f9b82d26163ef4dfa6808388ff0c9550e5856da13</originalsourceid><addsrcrecordid>eNpFkMlKA0EURcshYBvzA7qpH-j4Xs0FbjSOEGiQBNyF6vQrqdBJh66Y4N8rGHB1Dxw4i8vYNcIYEfzte_VQzcYCwI81aqGFOmGXqIRSwjqvTlkhtLUlOPtx9i-cOWcFgoZSWeEHrPBQGgWo3QUb5bwCALRGSZQFu5tv8teW-n3K1PCWQr9Jm0_eRS4feVevaLnj666hNvPYd2u-Df0uhZbvEx3yFRvE0GYaHXfI5s9Ps8lrOa1e3ib30zKhVKpEj6Ai1bC0SphfaKzAunbR1040wqCRFFUTg3HgpHMxwtJrDaSdNk1AOWQ3f91ERIttn9ah_14cH5E_f2BN6Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised learning of 3D object models from partial views</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ruhnke, M. ; Steder, B. ; Grisetti, G. ; Burgard, W.</creator><creatorcontrib>Ruhnke, M. ; Steder, B. ; Grisetti, G. ; Burgard, W.</creatorcontrib><description>We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans. Models learned from the objects are represented as point clouds. Our approach can deal with partial views and it can robustly learn accurate models from complex scenes. It is based on an iterative matching procedure which attempts to recursively merge similar models. The alignment between models is determined using a novel scan registration procedure based on range images. The decision about which models to merge is performed by spectral clustering of a similarity matrix whose entries represent the consistency between different models.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424427886</identifier><identifier>ISBN: 9781424427888</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1424427894</identifier><identifier>EISBN: 9781424427895</identifier><identifier>DOI: 10.1109/ROBOT.2009.5152524</identifier><identifier>LCCN: 90-640158</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clouds ; Iterative algorithms ; Laser modes ; Layout ; Merging ; model learning ; Object detection ; range images ; Robotics and automation ; Robots ; Robustness ; Unsupervised learning</subject><ispartof>2009 IEEE International Conference on Robotics and Automation, 2009, p.801-806</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5152524$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5152524$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruhnke, M.</creatorcontrib><creatorcontrib>Steder, B.</creatorcontrib><creatorcontrib>Grisetti, G.</creatorcontrib><creatorcontrib>Burgard, W.</creatorcontrib><title>Unsupervised learning of 3D object models from partial views</title><title>2009 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans. Models learned from the objects are represented as point clouds. Our approach can deal with partial views and it can robustly learn accurate models from complex scenes. It is based on an iterative matching procedure which attempts to recursively merge similar models. The alignment between models is determined using a novel scan registration procedure based on range images. The decision about which models to merge is performed by spectral clustering of a similarity matrix whose entries represent the consistency between different models.</description><subject>Clouds</subject><subject>Iterative algorithms</subject><subject>Laser modes</subject><subject>Layout</subject><subject>Merging</subject><subject>model learning</subject><subject>Object detection</subject><subject>range images</subject><subject>Robotics and automation</subject><subject>Robots</subject><subject>Robustness</subject><subject>Unsupervised learning</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424427886</isbn><isbn>9781424427888</isbn><isbn>1424427894</isbn><isbn>9781424427895</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMlKA0EURcshYBvzA7qpH-j4Xs0FbjSOEGiQBNyF6vQrqdBJh66Y4N8rGHB1Dxw4i8vYNcIYEfzte_VQzcYCwI81aqGFOmGXqIRSwjqvTlkhtLUlOPtx9i-cOWcFgoZSWeEHrPBQGgWo3QUb5bwCALRGSZQFu5tv8teW-n3K1PCWQr9Jm0_eRS4feVevaLnj666hNvPYd2u-Df0uhZbvEx3yFRvE0GYaHXfI5s9Ps8lrOa1e3ib30zKhVKpEj6Ai1bC0SphfaKzAunbR1040wqCRFFUTg3HgpHMxwtJrDaSdNk1AOWQ3f91ERIttn9ah_14cH5E_f2BN6Q</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Ruhnke, M.</creator><creator>Steder, B.</creator><creator>Grisetti, G.</creator><creator>Burgard, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200905</creationdate><title>Unsupervised learning of 3D object models from partial views</title><author>Ruhnke, M. ; Steder, B. ; Grisetti, G. ; Burgard, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1344-19104feb0c7426febd721bb8f9b82d26163ef4dfa6808388ff0c9550e5856da13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clouds</topic><topic>Iterative algorithms</topic><topic>Laser modes</topic><topic>Layout</topic><topic>Merging</topic><topic>model learning</topic><topic>Object detection</topic><topic>range images</topic><topic>Robotics and automation</topic><topic>Robots</topic><topic>Robustness</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruhnke, M.</creatorcontrib><creatorcontrib>Steder, B.</creatorcontrib><creatorcontrib>Grisetti, G.</creatorcontrib><creatorcontrib>Burgard, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruhnke, M.</au><au>Steder, B.</au><au>Grisetti, G.</au><au>Burgard, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised learning of 3D object models from partial views</atitle><btitle>2009 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2009-05</date><risdate>2009</risdate><spage>801</spage><epage>806</epage><pages>801-806</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424427886</isbn><isbn>9781424427888</isbn><eisbn>1424427894</eisbn><eisbn>9781424427895</eisbn><abstract>We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans. Models learned from the objects are represented as point clouds. Our approach can deal with partial views and it can robustly learn accurate models from complex scenes. It is based on an iterative matching procedure which attempts to recursively merge similar models. The alignment between models is determined using a novel scan registration procedure based on range images. The decision about which models to merge is performed by spectral clustering of a similarity matrix whose entries represent the consistency between different models.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2009.5152524</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2009 IEEE International Conference on Robotics and Automation, 2009, p.801-806
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_5152524
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clouds
Iterative algorithms
Laser modes
Layout
Merging
model learning
Object detection
range images
Robotics and automation
Robots
Robustness
Unsupervised learning
title Unsupervised learning of 3D object models from partial views
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20learning%20of%203D%20object%20models%20from%20partial%20views&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Ruhnke,%20M.&rft.date=2009-05&rft.spage=801&rft.epage=806&rft.pages=801-806&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424427886&rft.isbn_list=9781424427888&rft_id=info:doi/10.1109/ROBOT.2009.5152524&rft_dat=%3Cieee_6IE%3E5152524%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424427894&rft.eisbn_list=9781424427895&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5152524&rfr_iscdi=true