Rollover risk prediction of an instrumented heavy vehicle using high order sliding mode observer

In this paper, an original method about heavy vehicles rollover risk prediction is presented and validated experimentally. It is based on the calculation of the LTR (load transfer ratio) which depends on the estimated vertical forces using high order sliding mode observers. The validation tests were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Imine, H., Benallegue, A., Madani, T., Srairi, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue
container_start_page 64
container_title
container_volume
creator Imine, H.
Benallegue, A.
Madani, T.
Srairi, S.
description In this paper, an original method about heavy vehicles rollover risk prediction is presented and validated experimentally. It is based on the calculation of the LTR (load transfer ratio) which depends on the estimated vertical forces using high order sliding mode observers. The validation tests were carried out on an instrumented truck rolling on the road at various speeds and lane-change manoeuvres. Many scenarios have been experienced: driving on straight line, curve line and zigzag to emphasize the rollover phenomenon and its prediction to set off an alarm to the driver.
doi_str_mv 10.1109/ROBOT.2009.5152185
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5152185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5152185</ieee_id><sourcerecordid>5152185</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d20543646fdf54daac7ebe0202faae7d80a7b732d66b0f1dfba43e6d8c2b58ec3</originalsourceid><addsrcrecordid>eNpF0MtKw0AYBeDxUjDWvoBu5gVS_7lPllq8QaFQunBXJ5k_zWialJm00LdXseDqwDnwLQ4htwymjEFxv1w8LlZTDlBMFVOcWXVGrpnkUnJjC3lOMq6MycGa94v_wepLkjFQkEvDixHJCsi1BKbsFZmk9AkAzGgpmMjIx7Jv2_6AkcaQvuguog_VEPqO9jV1HQ1dGuJ-i92AnjboDkd6wCZULdJ9Ct2GNmHT0D76HyG1wf9W294j7cuE8ce9IaPatQknpxyT1fPTavaazxcvb7OHeR4KGHLPQUmhpa59raR3rjJYInDgtXNovAVnSiO417qEmvm6dFKg9rbipbJYiTG5-2MDIq53MWxdPK5Pp4lv8AZdWg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Rollover risk prediction of an instrumented heavy vehicle using high order sliding mode observer</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Imine, H. ; Benallegue, A. ; Madani, T. ; Srairi, S.</creator><creatorcontrib>Imine, H. ; Benallegue, A. ; Madani, T. ; Srairi, S.</creatorcontrib><description>In this paper, an original method about heavy vehicles rollover risk prediction is presented and validated experimentally. It is based on the calculation of the LTR (load transfer ratio) which depends on the estimated vertical forces using high order sliding mode observers. The validation tests were carried out on an instrumented truck rolling on the road at various speeds and lane-change manoeuvres. Many scenarios have been experienced: driving on straight line, curve line and zigzag to emphasize the rollover phenomenon and its prediction to set off an alarm to the driver.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424427886</identifier><identifier>ISBN: 9781424427888</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1424427894</identifier><identifier>EISBN: 9781424427895</identifier><identifier>DOI: 10.1109/ROBOT.2009.5152185</identifier><identifier>LCCN: 90-640158</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Axles ; Instruments ; Observers ; Road vehicles ; Robotics and automation ; Stability ; Suspensions ; Tires ; Wheels</subject><ispartof>2009 IEEE International Conference on Robotics and Automation, 2009, p.64-69</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5152185$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5152185$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Imine, H.</creatorcontrib><creatorcontrib>Benallegue, A.</creatorcontrib><creatorcontrib>Madani, T.</creatorcontrib><creatorcontrib>Srairi, S.</creatorcontrib><title>Rollover risk prediction of an instrumented heavy vehicle using high order sliding mode observer</title><title>2009 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>In this paper, an original method about heavy vehicles rollover risk prediction is presented and validated experimentally. It is based on the calculation of the LTR (load transfer ratio) which depends on the estimated vertical forces using high order sliding mode observers. The validation tests were carried out on an instrumented truck rolling on the road at various speeds and lane-change manoeuvres. Many scenarios have been experienced: driving on straight line, curve line and zigzag to emphasize the rollover phenomenon and its prediction to set off an alarm to the driver.</description><subject>Acceleration</subject><subject>Axles</subject><subject>Instruments</subject><subject>Observers</subject><subject>Road vehicles</subject><subject>Robotics and automation</subject><subject>Stability</subject><subject>Suspensions</subject><subject>Tires</subject><subject>Wheels</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424427886</isbn><isbn>9781424427888</isbn><isbn>1424427894</isbn><isbn>9781424427895</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpF0MtKw0AYBeDxUjDWvoBu5gVS_7lPllq8QaFQunBXJ5k_zWialJm00LdXseDqwDnwLQ4htwymjEFxv1w8LlZTDlBMFVOcWXVGrpnkUnJjC3lOMq6MycGa94v_wepLkjFQkEvDixHJCsi1BKbsFZmk9AkAzGgpmMjIx7Jv2_6AkcaQvuguog_VEPqO9jV1HQ1dGuJ-i92AnjboDkd6wCZULdJ9Ct2GNmHT0D76HyG1wf9W294j7cuE8ce9IaPatQknpxyT1fPTavaazxcvb7OHeR4KGHLPQUmhpa59raR3rjJYInDgtXNovAVnSiO417qEmvm6dFKg9rbipbJYiTG5-2MDIq53MWxdPK5Pp4lv8AZdWg</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Imine, H.</creator><creator>Benallegue, A.</creator><creator>Madani, T.</creator><creator>Srairi, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200905</creationdate><title>Rollover risk prediction of an instrumented heavy vehicle using high order sliding mode observer</title><author>Imine, H. ; Benallegue, A. ; Madani, T. ; Srairi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d20543646fdf54daac7ebe0202faae7d80a7b732d66b0f1dfba43e6d8c2b58ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Axles</topic><topic>Instruments</topic><topic>Observers</topic><topic>Road vehicles</topic><topic>Robotics and automation</topic><topic>Stability</topic><topic>Suspensions</topic><topic>Tires</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Imine, H.</creatorcontrib><creatorcontrib>Benallegue, A.</creatorcontrib><creatorcontrib>Madani, T.</creatorcontrib><creatorcontrib>Srairi, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Imine, H.</au><au>Benallegue, A.</au><au>Madani, T.</au><au>Srairi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Rollover risk prediction of an instrumented heavy vehicle using high order sliding mode observer</atitle><btitle>2009 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2009-05</date><risdate>2009</risdate><spage>64</spage><epage>69</epage><pages>64-69</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424427886</isbn><isbn>9781424427888</isbn><eisbn>1424427894</eisbn><eisbn>9781424427895</eisbn><abstract>In this paper, an original method about heavy vehicles rollover risk prediction is presented and validated experimentally. It is based on the calculation of the LTR (load transfer ratio) which depends on the estimated vertical forces using high order sliding mode observers. The validation tests were carried out on an instrumented truck rolling on the road at various speeds and lane-change manoeuvres. Many scenarios have been experienced: driving on straight line, curve line and zigzag to emphasize the rollover phenomenon and its prediction to set off an alarm to the driver.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2009.5152185</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2009 IEEE International Conference on Robotics and Automation, 2009, p.64-69
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_5152185
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Axles
Instruments
Observers
Road vehicles
Robotics and automation
Stability
Suspensions
Tires
Wheels
title Rollover risk prediction of an instrumented heavy vehicle using high order sliding mode observer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Rollover%20risk%20prediction%20of%20an%20instrumented%20heavy%20vehicle%20using%20high%20order%20sliding%20mode%20observer&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Imine,%20H.&rft.date=2009-05&rft.spage=64&rft.epage=69&rft.pages=64-69&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424427886&rft.isbn_list=9781424427888&rft_id=info:doi/10.1109/ROBOT.2009.5152185&rft_dat=%3Cieee_6IE%3E5152185%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424427894&rft.eisbn_list=9781424427895&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5152185&rfr_iscdi=true