Rollover risk prediction of an instrumented heavy vehicle using high order sliding mode observer
In this paper, an original method about heavy vehicles rollover risk prediction is presented and validated experimentally. It is based on the calculation of the LTR (load transfer ratio) which depends on the estimated vertical forces using high order sliding mode observers. The validation tests were...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | |
container_start_page | 64 |
container_title | |
container_volume | |
creator | Imine, H. Benallegue, A. Madani, T. Srairi, S. |
description | In this paper, an original method about heavy vehicles rollover risk prediction is presented and validated experimentally. It is based on the calculation of the LTR (load transfer ratio) which depends on the estimated vertical forces using high order sliding mode observers. The validation tests were carried out on an instrumented truck rolling on the road at various speeds and lane-change manoeuvres. Many scenarios have been experienced: driving on straight line, curve line and zigzag to emphasize the rollover phenomenon and its prediction to set off an alarm to the driver. |
doi_str_mv | 10.1109/ROBOT.2009.5152185 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5152185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5152185</ieee_id><sourcerecordid>5152185</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d20543646fdf54daac7ebe0202faae7d80a7b732d66b0f1dfba43e6d8c2b58ec3</originalsourceid><addsrcrecordid>eNpF0MtKw0AYBeDxUjDWvoBu5gVS_7lPllq8QaFQunBXJ5k_zWialJm00LdXseDqwDnwLQ4htwymjEFxv1w8LlZTDlBMFVOcWXVGrpnkUnJjC3lOMq6MycGa94v_wepLkjFQkEvDixHJCsi1BKbsFZmk9AkAzGgpmMjIx7Jv2_6AkcaQvuguog_VEPqO9jV1HQ1dGuJ-i92AnjboDkd6wCZULdJ9Ct2GNmHT0D76HyG1wf9W294j7cuE8ce9IaPatQknpxyT1fPTavaazxcvb7OHeR4KGHLPQUmhpa59raR3rjJYInDgtXNovAVnSiO417qEmvm6dFKg9rbipbJYiTG5-2MDIq53MWxdPK5Pp4lv8AZdWg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Rollover risk prediction of an instrumented heavy vehicle using high order sliding mode observer</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Imine, H. ; Benallegue, A. ; Madani, T. ; Srairi, S.</creator><creatorcontrib>Imine, H. ; Benallegue, A. ; Madani, T. ; Srairi, S.</creatorcontrib><description>In this paper, an original method about heavy vehicles rollover risk prediction is presented and validated experimentally. It is based on the calculation of the LTR (load transfer ratio) which depends on the estimated vertical forces using high order sliding mode observers. The validation tests were carried out on an instrumented truck rolling on the road at various speeds and lane-change manoeuvres. Many scenarios have been experienced: driving on straight line, curve line and zigzag to emphasize the rollover phenomenon and its prediction to set off an alarm to the driver.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424427886</identifier><identifier>ISBN: 9781424427888</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1424427894</identifier><identifier>EISBN: 9781424427895</identifier><identifier>DOI: 10.1109/ROBOT.2009.5152185</identifier><identifier>LCCN: 90-640158</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Axles ; Instruments ; Observers ; Road vehicles ; Robotics and automation ; Stability ; Suspensions ; Tires ; Wheels</subject><ispartof>2009 IEEE International Conference on Robotics and Automation, 2009, p.64-69</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5152185$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5152185$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Imine, H.</creatorcontrib><creatorcontrib>Benallegue, A.</creatorcontrib><creatorcontrib>Madani, T.</creatorcontrib><creatorcontrib>Srairi, S.</creatorcontrib><title>Rollover risk prediction of an instrumented heavy vehicle using high order sliding mode observer</title><title>2009 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>In this paper, an original method about heavy vehicles rollover risk prediction is presented and validated experimentally. It is based on the calculation of the LTR (load transfer ratio) which depends on the estimated vertical forces using high order sliding mode observers. The validation tests were carried out on an instrumented truck rolling on the road at various speeds and lane-change manoeuvres. Many scenarios have been experienced: driving on straight line, curve line and zigzag to emphasize the rollover phenomenon and its prediction to set off an alarm to the driver.</description><subject>Acceleration</subject><subject>Axles</subject><subject>Instruments</subject><subject>Observers</subject><subject>Road vehicles</subject><subject>Robotics and automation</subject><subject>Stability</subject><subject>Suspensions</subject><subject>Tires</subject><subject>Wheels</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424427886</isbn><isbn>9781424427888</isbn><isbn>1424427894</isbn><isbn>9781424427895</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpF0MtKw0AYBeDxUjDWvoBu5gVS_7lPllq8QaFQunBXJ5k_zWialJm00LdXseDqwDnwLQ4htwymjEFxv1w8LlZTDlBMFVOcWXVGrpnkUnJjC3lOMq6MycGa94v_wepLkjFQkEvDixHJCsi1BKbsFZmk9AkAzGgpmMjIx7Jv2_6AkcaQvuguog_VEPqO9jV1HQ1dGuJ-i92AnjboDkd6wCZULdJ9Ct2GNmHT0D76HyG1wf9W294j7cuE8ce9IaPatQknpxyT1fPTavaazxcvb7OHeR4KGHLPQUmhpa59raR3rjJYInDgtXNovAVnSiO417qEmvm6dFKg9rbipbJYiTG5-2MDIq53MWxdPK5Pp4lv8AZdWg</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Imine, H.</creator><creator>Benallegue, A.</creator><creator>Madani, T.</creator><creator>Srairi, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200905</creationdate><title>Rollover risk prediction of an instrumented heavy vehicle using high order sliding mode observer</title><author>Imine, H. ; Benallegue, A. ; Madani, T. ; Srairi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d20543646fdf54daac7ebe0202faae7d80a7b732d66b0f1dfba43e6d8c2b58ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Axles</topic><topic>Instruments</topic><topic>Observers</topic><topic>Road vehicles</topic><topic>Robotics and automation</topic><topic>Stability</topic><topic>Suspensions</topic><topic>Tires</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Imine, H.</creatorcontrib><creatorcontrib>Benallegue, A.</creatorcontrib><creatorcontrib>Madani, T.</creatorcontrib><creatorcontrib>Srairi, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Imine, H.</au><au>Benallegue, A.</au><au>Madani, T.</au><au>Srairi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Rollover risk prediction of an instrumented heavy vehicle using high order sliding mode observer</atitle><btitle>2009 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2009-05</date><risdate>2009</risdate><spage>64</spage><epage>69</epage><pages>64-69</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424427886</isbn><isbn>9781424427888</isbn><eisbn>1424427894</eisbn><eisbn>9781424427895</eisbn><abstract>In this paper, an original method about heavy vehicles rollover risk prediction is presented and validated experimentally. It is based on the calculation of the LTR (load transfer ratio) which depends on the estimated vertical forces using high order sliding mode observers. The validation tests were carried out on an instrumented truck rolling on the road at various speeds and lane-change manoeuvres. Many scenarios have been experienced: driving on straight line, curve line and zigzag to emphasize the rollover phenomenon and its prediction to set off an alarm to the driver.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2009.5152185</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | 2009 IEEE International Conference on Robotics and Automation, 2009, p.64-69 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_5152185 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Axles Instruments Observers Road vehicles Robotics and automation Stability Suspensions Tires Wheels |
title | Rollover risk prediction of an instrumented heavy vehicle using high order sliding mode observer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Rollover%20risk%20prediction%20of%20an%20instrumented%20heavy%20vehicle%20using%20high%20order%20sliding%20mode%20observer&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Imine,%20H.&rft.date=2009-05&rft.spage=64&rft.epage=69&rft.pages=64-69&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424427886&rft.isbn_list=9781424427888&rft_id=info:doi/10.1109/ROBOT.2009.5152185&rft_dat=%3Cieee_6IE%3E5152185%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424427894&rft.eisbn_list=9781424427895&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5152185&rfr_iscdi=true |