Kernel based image registration versus MLESAC: A comparative study

This paper evaluates the performance of a nonparametric robust image registration method based on the mean shift algorithm, which could successfully replace the random sampling algorithms. Therefore it realizes a comparative study between the proposed nonparametric method and other two important rob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fuiorea, D., Gui, V., Pescaru, D., Toma, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue
container_start_page 255
container_title
container_volume
creator Fuiorea, D.
Gui, V.
Pescaru, D.
Toma, C.
description This paper evaluates the performance of a nonparametric robust image registration method based on the mean shift algorithm, which could successfully replace the random sampling algorithms. Therefore it realizes a comparative study between the proposed nonparametric method and other two important robust random sampling methods, RANSAC and MLESAC. These techniques are analyzed and tested for performance evaluation in several image registration scenarios.
doi_str_mv 10.1109/SACI.2009.5136252
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5136252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5136252</ieee_id><sourcerecordid>5136252</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9db1c4c1afd399516f02ec5a718c9d0fd50bad40e048d5c8eb4a679f22756dea3</originalsourceid><addsrcrecordid>eNpFT8tOwzAQNEKVoKUfgLj4BxLWryTmFqIWKoI40Hvl2OsqqC_ZaaX-Pa6oxFxWMzva2SHkkUHOGOjn77pZ5BxA54qJgit-Q8ZMcplQVnD7T0o-IuOLUYMQCu7INMYfSJCKJ-mevH5g2OGGdiaio_3WrJEGXPdxCGbo9zt6whCPkX62sxT6Qmtq99uDuSxPSONwdOcHMvJmE3F6nROynM-WzXvWfr0tmrrNeg1Dpl3HrLTMeCe0VqzwwNEqU7LKagfeKeiMk4AgK6dshZ00Rak956UqHBoxIU9_Z3tEXB1C-jWcV9f-4hd6oExJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Kernel based image registration versus MLESAC: A comparative study</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fuiorea, D. ; Gui, V. ; Pescaru, D. ; Toma, C.</creator><creatorcontrib>Fuiorea, D. ; Gui, V. ; Pescaru, D. ; Toma, C.</creatorcontrib><description>This paper evaluates the performance of a nonparametric robust image registration method based on the mean shift algorithm, which could successfully replace the random sampling algorithms. Therefore it realizes a comparative study between the proposed nonparametric method and other two important robust random sampling methods, RANSAC and MLESAC. These techniques are analyzed and tested for performance evaluation in several image registration scenarios.</description><identifier>ISBN: 1424444772</identifier><identifier>ISBN: 9781424444779</identifier><identifier>EISBN: 1424444780</identifier><identifier>EISBN: 9781424444786</identifier><identifier>DOI: 10.1109/SACI.2009.5136252</identifier><identifier>LCCN: 2009903350</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cost function ; Image registration ; Image sampling ; Iterative algorithms ; Kernel ; Maximum likelihood estimation ; Noise robustness ; Parameter estimation ; Probability density function ; Solid modeling</subject><ispartof>2009 5th International Symposium on Applied Computational Intelligence and Informatics, 2009, p.255-260</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5136252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5136252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fuiorea, D.</creatorcontrib><creatorcontrib>Gui, V.</creatorcontrib><creatorcontrib>Pescaru, D.</creatorcontrib><creatorcontrib>Toma, C.</creatorcontrib><title>Kernel based image registration versus MLESAC: A comparative study</title><title>2009 5th International Symposium on Applied Computational Intelligence and Informatics</title><addtitle>SACI</addtitle><description>This paper evaluates the performance of a nonparametric robust image registration method based on the mean shift algorithm, which could successfully replace the random sampling algorithms. Therefore it realizes a comparative study between the proposed nonparametric method and other two important robust random sampling methods, RANSAC and MLESAC. These techniques are analyzed and tested for performance evaluation in several image registration scenarios.</description><subject>Cost function</subject><subject>Image registration</subject><subject>Image sampling</subject><subject>Iterative algorithms</subject><subject>Kernel</subject><subject>Maximum likelihood estimation</subject><subject>Noise robustness</subject><subject>Parameter estimation</subject><subject>Probability density function</subject><subject>Solid modeling</subject><isbn>1424444772</isbn><isbn>9781424444779</isbn><isbn>1424444780</isbn><isbn>9781424444786</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT8tOwzAQNEKVoKUfgLj4BxLWryTmFqIWKoI40Hvl2OsqqC_ZaaX-Pa6oxFxWMzva2SHkkUHOGOjn77pZ5BxA54qJgit-Q8ZMcplQVnD7T0o-IuOLUYMQCu7INMYfSJCKJ-mevH5g2OGGdiaio_3WrJEGXPdxCGbo9zt6whCPkX62sxT6Qmtq99uDuSxPSONwdOcHMvJmE3F6nROynM-WzXvWfr0tmrrNeg1Dpl3HrLTMeCe0VqzwwNEqU7LKagfeKeiMk4AgK6dshZ00Rak956UqHBoxIU9_Z3tEXB1C-jWcV9f-4hd6oExJ</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Fuiorea, D.</creator><creator>Gui, V.</creator><creator>Pescaru, D.</creator><creator>Toma, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>Kernel based image registration versus MLESAC: A comparative study</title><author>Fuiorea, D. ; Gui, V. ; Pescaru, D. ; Toma, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9db1c4c1afd399516f02ec5a718c9d0fd50bad40e048d5c8eb4a679f22756dea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cost function</topic><topic>Image registration</topic><topic>Image sampling</topic><topic>Iterative algorithms</topic><topic>Kernel</topic><topic>Maximum likelihood estimation</topic><topic>Noise robustness</topic><topic>Parameter estimation</topic><topic>Probability density function</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Fuiorea, D.</creatorcontrib><creatorcontrib>Gui, V.</creatorcontrib><creatorcontrib>Pescaru, D.</creatorcontrib><creatorcontrib>Toma, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fuiorea, D.</au><au>Gui, V.</au><au>Pescaru, D.</au><au>Toma, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Kernel based image registration versus MLESAC: A comparative study</atitle><btitle>2009 5th International Symposium on Applied Computational Intelligence and Informatics</btitle><stitle>SACI</stitle><date>2009-05</date><risdate>2009</risdate><spage>255</spage><epage>260</epage><pages>255-260</pages><isbn>1424444772</isbn><isbn>9781424444779</isbn><eisbn>1424444780</eisbn><eisbn>9781424444786</eisbn><abstract>This paper evaluates the performance of a nonparametric robust image registration method based on the mean shift algorithm, which could successfully replace the random sampling algorithms. Therefore it realizes a comparative study between the proposed nonparametric method and other two important robust random sampling methods, RANSAC and MLESAC. These techniques are analyzed and tested for performance evaluation in several image registration scenarios.</abstract><pub>IEEE</pub><doi>10.1109/SACI.2009.5136252</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424444772
ispartof 2009 5th International Symposium on Applied Computational Intelligence and Informatics, 2009, p.255-260
issn
language eng
recordid cdi_ieee_primary_5136252
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cost function
Image registration
Image sampling
Iterative algorithms
Kernel
Maximum likelihood estimation
Noise robustness
Parameter estimation
Probability density function
Solid modeling
title Kernel based image registration versus MLESAC: A comparative study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Kernel%20based%20image%20registration%20versus%20MLESAC:%20A%20comparative%20study&rft.btitle=2009%205th%20International%20Symposium%20on%20Applied%20Computational%20Intelligence%20and%20Informatics&rft.au=Fuiorea,%20D.&rft.date=2009-05&rft.spage=255&rft.epage=260&rft.pages=255-260&rft.isbn=1424444772&rft.isbn_list=9781424444779&rft_id=info:doi/10.1109/SACI.2009.5136252&rft_dat=%3Cieee_6IE%3E5136252%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424444780&rft.eisbn_list=9781424444786&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5136252&rfr_iscdi=true