Achieving accurate thermal characterization using a CFD code: a case study of PLCC packages

Achieving component-level thermal characterization using computational fluid dynamics (CFD) is assessed using a case study approach. The FLOTHERM code is used to simulate the thermal performance of three plastic-based components (68-lead and 84-lead Plastic Leaded Chip Carriers or PLCCs and a 164-le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Burgos, J., Manno, V.P., Azar, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue
container_start_page 55
container_title
container_volume
creator Burgos, J.
Manno, V.P.
Azar, K.
description Achieving component-level thermal characterization using computational fluid dynamics (CFD) is assessed using a case study approach. The FLOTHERM code is used to simulate the thermal performance of three plastic-based components (68-lead and 84-lead Plastic Leaded Chip Carriers or PLCCs and a 164-lead Plastic Quad Flat Pack or PQFP) under forced air cooling conditions. Predictions of thermal resistance are compared to experimental measurements. One aspect of the work is to use results from a single situation (84-PLCC and an approach air velocity of 1.5 m/sec) to develop a set of "modeling guidelines". These modeling guidelines are then be applied to the other components and flow conditions (0.76 to 3.05 m/sec) to test their validity. Guideline parameters include near component flow field nodalization, geometric detail in representing conduction paths and code user options such as turbulent flow models. The average deviation of predicted versus measured values of junction to ambient thermal resistance (/spl theta//sub ja/) was 7.5% using the derived guidelines. An additional component design sensitivity investigated was the effect of the introduction of a heat spreading "heat post" in the high temperature regions of the 164-PQFP.
doi_str_mv 10.1109/STHERM.1995.512052
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_512052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>512052</ieee_id><sourcerecordid>746185503</sourcerecordid><originalsourceid>FETCH-LOGICAL-i235t-7701bc82ddd1f0546f2689b8a7fdb741ea38a2395345341ace516688fe33ca623</originalsourceid><addsrcrecordid>eNp90EtPwkAUBeCJj0SC_AFWs9JVcd4zdWcqiAlGo7hyQS7TWxgtFDutCf56G3FtcpJ7Fl_u4hAy5GzEOUuvXubT8fPDiKepHmkumBZHpCe0tQlnjB2TQWod6yKFkkqekB5nRidCCH5GBjG-d4gprRUTPfJ249cBv8J2RcH7toYGabPGegMl9WuowTdYh29oQrWlbfx1NJvcUl_leN11DxFpbNp8T6uCPs2yjO7Af8AK4zk5LaCMOPi7ffI6Gc-zaTJ7vLvPbmZJEFI3ibWML70TeZ7zgmllCmFcunRgi3xpFUeQDoRMtVRdOHjU3BjnCpTSgxGyTy4Pf3d19dlibBabED2WJWyxauPCKsOd1kx28uJfKazkzti0g8MDDIi42NVhA_V-cRhb_gDf0m9D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27318679</pqid></control><display><type>conference_proceeding</type><title>Achieving accurate thermal characterization using a CFD code: a case study of PLCC packages</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Burgos, J. ; Manno, V.P. ; Azar, K.</creator><creatorcontrib>Burgos, J. ; Manno, V.P. ; Azar, K.</creatorcontrib><description>Achieving component-level thermal characterization using computational fluid dynamics (CFD) is assessed using a case study approach. The FLOTHERM code is used to simulate the thermal performance of three plastic-based components (68-lead and 84-lead Plastic Leaded Chip Carriers or PLCCs and a 164-lead Plastic Quad Flat Pack or PQFP) under forced air cooling conditions. Predictions of thermal resistance are compared to experimental measurements. One aspect of the work is to use results from a single situation (84-PLCC and an approach air velocity of 1.5 m/sec) to develop a set of "modeling guidelines". These modeling guidelines are then be applied to the other components and flow conditions (0.76 to 3.05 m/sec) to test their validity. Guideline parameters include near component flow field nodalization, geometric detail in representing conduction paths and code user options such as turbulent flow models. The average deviation of predicted versus measured values of junction to ambient thermal resistance (/spl theta//sub ja/) was 7.5% using the derived guidelines. An additional component design sensitivity investigated was the effect of the introduction of a heat spreading "heat post" in the high temperature regions of the 164-PQFP.</description><identifier>ISSN: 1065-2221</identifier><identifier>ISBN: 9780780324343</identifier><identifier>ISBN: 078032434X</identifier><identifier>EISSN: 2577-1000</identifier><identifier>DOI: 10.1109/STHERM.1995.512052</identifier><language>eng</language><publisher>IEEE</publisher><subject>Codes (symbols) ; Computational fluid dynamics ; Computational modeling ; Computer simulation ; Cooling ; Electrical resistance measurement ; Electronics packaging ; Forecasting ; Guidelines ; Heat conduction ; Heat resistance ; Plastics ; Semiconductor device measurement ; Thermal force ; Thermal resistance ; Turbulent flow</subject><ispartof>Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 1995, p.55-64</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/512052$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,25140,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/512052$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Burgos, J.</creatorcontrib><creatorcontrib>Manno, V.P.</creatorcontrib><creatorcontrib>Azar, K.</creatorcontrib><title>Achieving accurate thermal characterization using a CFD code: a case study of PLCC packages</title><title>Annual IEEE Semiconductor Thermal Measurement and Management Symposium</title><addtitle>STHERM</addtitle><description>Achieving component-level thermal characterization using computational fluid dynamics (CFD) is assessed using a case study approach. The FLOTHERM code is used to simulate the thermal performance of three plastic-based components (68-lead and 84-lead Plastic Leaded Chip Carriers or PLCCs and a 164-lead Plastic Quad Flat Pack or PQFP) under forced air cooling conditions. Predictions of thermal resistance are compared to experimental measurements. One aspect of the work is to use results from a single situation (84-PLCC and an approach air velocity of 1.5 m/sec) to develop a set of "modeling guidelines". These modeling guidelines are then be applied to the other components and flow conditions (0.76 to 3.05 m/sec) to test their validity. Guideline parameters include near component flow field nodalization, geometric detail in representing conduction paths and code user options such as turbulent flow models. The average deviation of predicted versus measured values of junction to ambient thermal resistance (/spl theta//sub ja/) was 7.5% using the derived guidelines. An additional component design sensitivity investigated was the effect of the introduction of a heat spreading "heat post" in the high temperature regions of the 164-PQFP.</description><subject>Codes (symbols)</subject><subject>Computational fluid dynamics</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Electrical resistance measurement</subject><subject>Electronics packaging</subject><subject>Forecasting</subject><subject>Guidelines</subject><subject>Heat conduction</subject><subject>Heat resistance</subject><subject>Plastics</subject><subject>Semiconductor device measurement</subject><subject>Thermal force</subject><subject>Thermal resistance</subject><subject>Turbulent flow</subject><issn>1065-2221</issn><issn>2577-1000</issn><isbn>9780780324343</isbn><isbn>078032434X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp90EtPwkAUBeCJj0SC_AFWs9JVcd4zdWcqiAlGo7hyQS7TWxgtFDutCf56G3FtcpJ7Fl_u4hAy5GzEOUuvXubT8fPDiKepHmkumBZHpCe0tQlnjB2TQWod6yKFkkqekB5nRidCCH5GBjG-d4gprRUTPfJ249cBv8J2RcH7toYGabPGegMl9WuowTdYh29oQrWlbfx1NJvcUl_leN11DxFpbNp8T6uCPs2yjO7Af8AK4zk5LaCMOPi7ffI6Gc-zaTJ7vLvPbmZJEFI3ibWML70TeZ7zgmllCmFcunRgi3xpFUeQDoRMtVRdOHjU3BjnCpTSgxGyTy4Pf3d19dlibBabED2WJWyxauPCKsOd1kx28uJfKazkzti0g8MDDIi42NVhA_V-cRhb_gDf0m9D</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Burgos, J.</creator><creator>Manno, V.P.</creator><creator>Azar, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>1995</creationdate><title>Achieving accurate thermal characterization using a CFD code: a case study of PLCC packages</title><author>Burgos, J. ; Manno, V.P. ; Azar, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i235t-7701bc82ddd1f0546f2689b8a7fdb741ea38a2395345341ace516688fe33ca623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Codes (symbols)</topic><topic>Computational fluid dynamics</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Electrical resistance measurement</topic><topic>Electronics packaging</topic><topic>Forecasting</topic><topic>Guidelines</topic><topic>Heat conduction</topic><topic>Heat resistance</topic><topic>Plastics</topic><topic>Semiconductor device measurement</topic><topic>Thermal force</topic><topic>Thermal resistance</topic><topic>Turbulent flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Burgos, J.</creatorcontrib><creatorcontrib>Manno, V.P.</creatorcontrib><creatorcontrib>Azar, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Burgos, J.</au><au>Manno, V.P.</au><au>Azar, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Achieving accurate thermal characterization using a CFD code: a case study of PLCC packages</atitle><btitle>Annual IEEE Semiconductor Thermal Measurement and Management Symposium</btitle><stitle>STHERM</stitle><date>1995</date><risdate>1995</risdate><spage>55</spage><epage>64</epage><pages>55-64</pages><issn>1065-2221</issn><eissn>2577-1000</eissn><isbn>9780780324343</isbn><isbn>078032434X</isbn><abstract>Achieving component-level thermal characterization using computational fluid dynamics (CFD) is assessed using a case study approach. The FLOTHERM code is used to simulate the thermal performance of three plastic-based components (68-lead and 84-lead Plastic Leaded Chip Carriers or PLCCs and a 164-lead Plastic Quad Flat Pack or PQFP) under forced air cooling conditions. Predictions of thermal resistance are compared to experimental measurements. One aspect of the work is to use results from a single situation (84-PLCC and an approach air velocity of 1.5 m/sec) to develop a set of "modeling guidelines". These modeling guidelines are then be applied to the other components and flow conditions (0.76 to 3.05 m/sec) to test their validity. Guideline parameters include near component flow field nodalization, geometric detail in representing conduction paths and code user options such as turbulent flow models. The average deviation of predicted versus measured values of junction to ambient thermal resistance (/spl theta//sub ja/) was 7.5% using the derived guidelines. An additional component design sensitivity investigated was the effect of the introduction of a heat spreading "heat post" in the high temperature regions of the 164-PQFP.</abstract><pub>IEEE</pub><doi>10.1109/STHERM.1995.512052</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1065-2221
ispartof Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 1995, p.55-64
issn 1065-2221
2577-1000
language eng
recordid cdi_ieee_primary_512052
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Codes (symbols)
Computational fluid dynamics
Computational modeling
Computer simulation
Cooling
Electrical resistance measurement
Electronics packaging
Forecasting
Guidelines
Heat conduction
Heat resistance
Plastics
Semiconductor device measurement
Thermal force
Thermal resistance
Turbulent flow
title Achieving accurate thermal characterization using a CFD code: a case study of PLCC packages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Achieving%20accurate%20thermal%20characterization%20using%20a%20CFD%20code:%20a%20case%20study%20of%20PLCC%20packages&rft.btitle=Annual%20IEEE%20Semiconductor%20Thermal%20Measurement%20and%20Management%20Symposium&rft.au=Burgos,%20J.&rft.date=1995&rft.spage=55&rft.epage=64&rft.pages=55-64&rft.issn=1065-2221&rft.eissn=2577-1000&rft.isbn=9780780324343&rft.isbn_list=078032434X&rft_id=info:doi/10.1109/STHERM.1995.512052&rft_dat=%3Cproquest_6IE%3E746185503%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27318679&rft_id=info:pmid/&rft_ieee_id=512052&rfr_iscdi=true