Fast blind equalization by using frequency domain block constant modulus algorithm

This paper presents fast algorithms for the CMA (constant modulus algorithm), which is one of the widely used blind equalization algorithms. To derive the fast algorithm of the CMA for high-speed equalization, we first introduce BCMA (block CMA) which adjusts the equalizer coefficients by block proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yoon Gi Yang, Nam Ik Cho, Sang Uk Lee
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1006 vol.2
container_issue
container_start_page 1003
container_title
container_volume 2
creator Yoon Gi Yang
Nam Ik Cho
Sang Uk Lee
description This paper presents fast algorithms for the CMA (constant modulus algorithm), which is one of the widely used blind equalization algorithms. To derive the fast algorithm of the CMA for high-speed equalization, we first introduce BCMA (block CMA) which adjusts the equalizer coefficients by block processing of the received symbols in the time domain. Based on the BCMA, we propose the FBCMA (frequency domain block CMA) which employs fast linear convolution in the DFT domain by using the overlap save method. In this paper, a non-linear error function in the frequency domain is derived using the Parseval's relation. Also, an adaptive algorithm in the DFT domain is developed to adjust the DFT domain filter coefficients. If the block size and filter length is N, the multiplications required for the conventional CMA and proposed FBCMA are in the order of O(N/sup 2/) and O(N log N), respectively. The computer simulations show that the proposed FBCMA presents comparable performance to the conventional CMA, while requiring less computations.
doi_str_mv 10.1109/MWSCAS.1995.510262
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_510262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>510262</ieee_id><sourcerecordid>510262</sourcerecordid><originalsourceid>FETCH-ieee_primary_5102623</originalsourceid><addsrcrecordid>eNp9jkELgjAcxQcRFOUX8PT_Atk2M90xJOnSpYKOMnXaam7l5sE-fUKdezx48PtdHkI-wQEhmK2P13O6OweEsSiICKZbOkEeixM8NqQspniGPGvveMwmwlGSzNEp49ZBoaSuQLx6ruSbO2k0FAP0VuoG6m7kQpcDVKblcjTKlA8ojbaOawetqXrVW-CqMZ10t3aJpjVXVni_XSA_21_Sw0oKIfJnJ1veDfn3YPhXfgAu10D6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast blind equalization by using frequency domain block constant modulus algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yoon Gi Yang ; Nam Ik Cho ; Sang Uk Lee</creator><creatorcontrib>Yoon Gi Yang ; Nam Ik Cho ; Sang Uk Lee</creatorcontrib><description>This paper presents fast algorithms for the CMA (constant modulus algorithm), which is one of the widely used blind equalization algorithms. To derive the fast algorithm of the CMA for high-speed equalization, we first introduce BCMA (block CMA) which adjusts the equalizer coefficients by block processing of the received symbols in the time domain. Based on the BCMA, we propose the FBCMA (frequency domain block CMA) which employs fast linear convolution in the DFT domain by using the overlap save method. In this paper, a non-linear error function in the frequency domain is derived using the Parseval's relation. Also, an adaptive algorithm in the DFT domain is developed to adjust the DFT domain filter coefficients. If the block size and filter length is N, the multiplications required for the conventional CMA and proposed FBCMA are in the order of O(N/sup 2/) and O(N log N), respectively. The computer simulations show that the proposed FBCMA presents comparable performance to the conventional CMA, while requiring less computations.</description><identifier>ISBN: 9780780329720</identifier><identifier>ISBN: 0780329724</identifier><identifier>DOI: 10.1109/MWSCAS.1995.510262</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive algorithm ; Adaptive equalizers ; Adaptive filters ; Blind equalizers ; Cost function ; Finite impulse response filter ; Frequency domain analysis ; HDTV ; Instruments ; Interference</subject><ispartof>38th Midwest Symposium on Circuits and Systems. Proceedings, 1995, Vol.2, p.1003-1006 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/510262$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/510262$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yoon Gi Yang</creatorcontrib><creatorcontrib>Nam Ik Cho</creatorcontrib><creatorcontrib>Sang Uk Lee</creatorcontrib><title>Fast blind equalization by using frequency domain block constant modulus algorithm</title><title>38th Midwest Symposium on Circuits and Systems. Proceedings</title><addtitle>MWSCAS</addtitle><description>This paper presents fast algorithms for the CMA (constant modulus algorithm), which is one of the widely used blind equalization algorithms. To derive the fast algorithm of the CMA for high-speed equalization, we first introduce BCMA (block CMA) which adjusts the equalizer coefficients by block processing of the received symbols in the time domain. Based on the BCMA, we propose the FBCMA (frequency domain block CMA) which employs fast linear convolution in the DFT domain by using the overlap save method. In this paper, a non-linear error function in the frequency domain is derived using the Parseval's relation. Also, an adaptive algorithm in the DFT domain is developed to adjust the DFT domain filter coefficients. If the block size and filter length is N, the multiplications required for the conventional CMA and proposed FBCMA are in the order of O(N/sup 2/) and O(N log N), respectively. The computer simulations show that the proposed FBCMA presents comparable performance to the conventional CMA, while requiring less computations.</description><subject>Adaptive algorithm</subject><subject>Adaptive equalizers</subject><subject>Adaptive filters</subject><subject>Blind equalizers</subject><subject>Cost function</subject><subject>Finite impulse response filter</subject><subject>Frequency domain analysis</subject><subject>HDTV</subject><subject>Instruments</subject><subject>Interference</subject><isbn>9780780329720</isbn><isbn>0780329724</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jkELgjAcxQcRFOUX8PT_Atk2M90xJOnSpYKOMnXaam7l5sE-fUKdezx48PtdHkI-wQEhmK2P13O6OweEsSiICKZbOkEeixM8NqQspniGPGvveMwmwlGSzNEp49ZBoaSuQLx6ruSbO2k0FAP0VuoG6m7kQpcDVKblcjTKlA8ojbaOawetqXrVW-CqMZ10t3aJpjVXVni_XSA_21_Sw0oKIfJnJ1veDfn3YPhXfgAu10D6</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Yoon Gi Yang</creator><creator>Nam Ik Cho</creator><creator>Sang Uk Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Fast blind equalization by using frequency domain block constant modulus algorithm</title><author>Yoon Gi Yang ; Nam Ik Cho ; Sang Uk Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5102623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive equalizers</topic><topic>Adaptive filters</topic><topic>Blind equalizers</topic><topic>Cost function</topic><topic>Finite impulse response filter</topic><topic>Frequency domain analysis</topic><topic>HDTV</topic><topic>Instruments</topic><topic>Interference</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoon Gi Yang</creatorcontrib><creatorcontrib>Nam Ik Cho</creatorcontrib><creatorcontrib>Sang Uk Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoon Gi Yang</au><au>Nam Ik Cho</au><au>Sang Uk Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast blind equalization by using frequency domain block constant modulus algorithm</atitle><btitle>38th Midwest Symposium on Circuits and Systems. Proceedings</btitle><stitle>MWSCAS</stitle><date>1995</date><risdate>1995</risdate><volume>2</volume><spage>1003</spage><epage>1006 vol.2</epage><pages>1003-1006 vol.2</pages><isbn>9780780329720</isbn><isbn>0780329724</isbn><abstract>This paper presents fast algorithms for the CMA (constant modulus algorithm), which is one of the widely used blind equalization algorithms. To derive the fast algorithm of the CMA for high-speed equalization, we first introduce BCMA (block CMA) which adjusts the equalizer coefficients by block processing of the received symbols in the time domain. Based on the BCMA, we propose the FBCMA (frequency domain block CMA) which employs fast linear convolution in the DFT domain by using the overlap save method. In this paper, a non-linear error function in the frequency domain is derived using the Parseval's relation. Also, an adaptive algorithm in the DFT domain is developed to adjust the DFT domain filter coefficients. If the block size and filter length is N, the multiplications required for the conventional CMA and proposed FBCMA are in the order of O(N/sup 2/) and O(N log N), respectively. The computer simulations show that the proposed FBCMA presents comparable performance to the conventional CMA, while requiring less computations.</abstract><pub>IEEE</pub><doi>10.1109/MWSCAS.1995.510262</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780329720
ispartof 38th Midwest Symposium on Circuits and Systems. Proceedings, 1995, Vol.2, p.1003-1006 vol.2
issn
language eng
recordid cdi_ieee_primary_510262
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive algorithm
Adaptive equalizers
Adaptive filters
Blind equalizers
Cost function
Finite impulse response filter
Frequency domain analysis
HDTV
Instruments
Interference
title Fast blind equalization by using frequency domain block constant modulus algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20blind%20equalization%20by%20using%20frequency%20domain%20block%20constant%20modulus%20algorithm&rft.btitle=38th%20Midwest%20Symposium%20on%20Circuits%20and%20Systems.%20Proceedings&rft.au=Yoon%20Gi%20Yang&rft.date=1995&rft.volume=2&rft.spage=1003&rft.epage=1006%20vol.2&rft.pages=1003-1006%20vol.2&rft.isbn=9780780329720&rft.isbn_list=0780329724&rft_id=info:doi/10.1109/MWSCAS.1995.510262&rft_dat=%3Cieee_6IE%3E510262%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=510262&rfr_iscdi=true