Fast blind equalization by using frequency domain block constant modulus algorithm
This paper presents fast algorithms for the CMA (constant modulus algorithm), which is one of the widely used blind equalization algorithms. To derive the fast algorithm of the CMA for high-speed equalization, we first introduce BCMA (block CMA) which adjusts the equalizer coefficients by block proc...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1006 vol.2 |
---|---|
container_issue | |
container_start_page | 1003 |
container_title | |
container_volume | 2 |
creator | Yoon Gi Yang Nam Ik Cho Sang Uk Lee |
description | This paper presents fast algorithms for the CMA (constant modulus algorithm), which is one of the widely used blind equalization algorithms. To derive the fast algorithm of the CMA for high-speed equalization, we first introduce BCMA (block CMA) which adjusts the equalizer coefficients by block processing of the received symbols in the time domain. Based on the BCMA, we propose the FBCMA (frequency domain block CMA) which employs fast linear convolution in the DFT domain by using the overlap save method. In this paper, a non-linear error function in the frequency domain is derived using the Parseval's relation. Also, an adaptive algorithm in the DFT domain is developed to adjust the DFT domain filter coefficients. If the block size and filter length is N, the multiplications required for the conventional CMA and proposed FBCMA are in the order of O(N/sup 2/) and O(N log N), respectively. The computer simulations show that the proposed FBCMA presents comparable performance to the conventional CMA, while requiring less computations. |
doi_str_mv | 10.1109/MWSCAS.1995.510262 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_510262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>510262</ieee_id><sourcerecordid>510262</sourcerecordid><originalsourceid>FETCH-ieee_primary_5102623</originalsourceid><addsrcrecordid>eNp9jkELgjAcxQcRFOUX8PT_Atk2M90xJOnSpYKOMnXaam7l5sE-fUKdezx48PtdHkI-wQEhmK2P13O6OweEsSiICKZbOkEeixM8NqQspniGPGvveMwmwlGSzNEp49ZBoaSuQLx6ruSbO2k0FAP0VuoG6m7kQpcDVKblcjTKlA8ojbaOawetqXrVW-CqMZ10t3aJpjVXVni_XSA_21_Sw0oKIfJnJ1veDfn3YPhXfgAu10D6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast blind equalization by using frequency domain block constant modulus algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yoon Gi Yang ; Nam Ik Cho ; Sang Uk Lee</creator><creatorcontrib>Yoon Gi Yang ; Nam Ik Cho ; Sang Uk Lee</creatorcontrib><description>This paper presents fast algorithms for the CMA (constant modulus algorithm), which is one of the widely used blind equalization algorithms. To derive the fast algorithm of the CMA for high-speed equalization, we first introduce BCMA (block CMA) which adjusts the equalizer coefficients by block processing of the received symbols in the time domain. Based on the BCMA, we propose the FBCMA (frequency domain block CMA) which employs fast linear convolution in the DFT domain by using the overlap save method. In this paper, a non-linear error function in the frequency domain is derived using the Parseval's relation. Also, an adaptive algorithm in the DFT domain is developed to adjust the DFT domain filter coefficients. If the block size and filter length is N, the multiplications required for the conventional CMA and proposed FBCMA are in the order of O(N/sup 2/) and O(N log N), respectively. The computer simulations show that the proposed FBCMA presents comparable performance to the conventional CMA, while requiring less computations.</description><identifier>ISBN: 9780780329720</identifier><identifier>ISBN: 0780329724</identifier><identifier>DOI: 10.1109/MWSCAS.1995.510262</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive algorithm ; Adaptive equalizers ; Adaptive filters ; Blind equalizers ; Cost function ; Finite impulse response filter ; Frequency domain analysis ; HDTV ; Instruments ; Interference</subject><ispartof>38th Midwest Symposium on Circuits and Systems. Proceedings, 1995, Vol.2, p.1003-1006 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/510262$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/510262$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yoon Gi Yang</creatorcontrib><creatorcontrib>Nam Ik Cho</creatorcontrib><creatorcontrib>Sang Uk Lee</creatorcontrib><title>Fast blind equalization by using frequency domain block constant modulus algorithm</title><title>38th Midwest Symposium on Circuits and Systems. Proceedings</title><addtitle>MWSCAS</addtitle><description>This paper presents fast algorithms for the CMA (constant modulus algorithm), which is one of the widely used blind equalization algorithms. To derive the fast algorithm of the CMA for high-speed equalization, we first introduce BCMA (block CMA) which adjusts the equalizer coefficients by block processing of the received symbols in the time domain. Based on the BCMA, we propose the FBCMA (frequency domain block CMA) which employs fast linear convolution in the DFT domain by using the overlap save method. In this paper, a non-linear error function in the frequency domain is derived using the Parseval's relation. Also, an adaptive algorithm in the DFT domain is developed to adjust the DFT domain filter coefficients. If the block size and filter length is N, the multiplications required for the conventional CMA and proposed FBCMA are in the order of O(N/sup 2/) and O(N log N), respectively. The computer simulations show that the proposed FBCMA presents comparable performance to the conventional CMA, while requiring less computations.</description><subject>Adaptive algorithm</subject><subject>Adaptive equalizers</subject><subject>Adaptive filters</subject><subject>Blind equalizers</subject><subject>Cost function</subject><subject>Finite impulse response filter</subject><subject>Frequency domain analysis</subject><subject>HDTV</subject><subject>Instruments</subject><subject>Interference</subject><isbn>9780780329720</isbn><isbn>0780329724</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jkELgjAcxQcRFOUX8PT_Atk2M90xJOnSpYKOMnXaam7l5sE-fUKdezx48PtdHkI-wQEhmK2P13O6OweEsSiICKZbOkEeixM8NqQspniGPGvveMwmwlGSzNEp49ZBoaSuQLx6ruSbO2k0FAP0VuoG6m7kQpcDVKblcjTKlA8ojbaOawetqXrVW-CqMZ10t3aJpjVXVni_XSA_21_Sw0oKIfJnJ1veDfn3YPhXfgAu10D6</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Yoon Gi Yang</creator><creator>Nam Ik Cho</creator><creator>Sang Uk Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Fast blind equalization by using frequency domain block constant modulus algorithm</title><author>Yoon Gi Yang ; Nam Ik Cho ; Sang Uk Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5102623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive equalizers</topic><topic>Adaptive filters</topic><topic>Blind equalizers</topic><topic>Cost function</topic><topic>Finite impulse response filter</topic><topic>Frequency domain analysis</topic><topic>HDTV</topic><topic>Instruments</topic><topic>Interference</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoon Gi Yang</creatorcontrib><creatorcontrib>Nam Ik Cho</creatorcontrib><creatorcontrib>Sang Uk Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoon Gi Yang</au><au>Nam Ik Cho</au><au>Sang Uk Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast blind equalization by using frequency domain block constant modulus algorithm</atitle><btitle>38th Midwest Symposium on Circuits and Systems. Proceedings</btitle><stitle>MWSCAS</stitle><date>1995</date><risdate>1995</risdate><volume>2</volume><spage>1003</spage><epage>1006 vol.2</epage><pages>1003-1006 vol.2</pages><isbn>9780780329720</isbn><isbn>0780329724</isbn><abstract>This paper presents fast algorithms for the CMA (constant modulus algorithm), which is one of the widely used blind equalization algorithms. To derive the fast algorithm of the CMA for high-speed equalization, we first introduce BCMA (block CMA) which adjusts the equalizer coefficients by block processing of the received symbols in the time domain. Based on the BCMA, we propose the FBCMA (frequency domain block CMA) which employs fast linear convolution in the DFT domain by using the overlap save method. In this paper, a non-linear error function in the frequency domain is derived using the Parseval's relation. Also, an adaptive algorithm in the DFT domain is developed to adjust the DFT domain filter coefficients. If the block size and filter length is N, the multiplications required for the conventional CMA and proposed FBCMA are in the order of O(N/sup 2/) and O(N log N), respectively. The computer simulations show that the proposed FBCMA presents comparable performance to the conventional CMA, while requiring less computations.</abstract><pub>IEEE</pub><doi>10.1109/MWSCAS.1995.510262</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780329720 |
ispartof | 38th Midwest Symposium on Circuits and Systems. Proceedings, 1995, Vol.2, p.1003-1006 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_510262 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive algorithm Adaptive equalizers Adaptive filters Blind equalizers Cost function Finite impulse response filter Frequency domain analysis HDTV Instruments Interference |
title | Fast blind equalization by using frequency domain block constant modulus algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20blind%20equalization%20by%20using%20frequency%20domain%20block%20constant%20modulus%20algorithm&rft.btitle=38th%20Midwest%20Symposium%20on%20Circuits%20and%20Systems.%20Proceedings&rft.au=Yoon%20Gi%20Yang&rft.date=1995&rft.volume=2&rft.spage=1003&rft.epage=1006%20vol.2&rft.pages=1003-1006%20vol.2&rft.isbn=9780780329720&rft.isbn_list=0780329724&rft_id=info:doi/10.1109/MWSCAS.1995.510262&rft_dat=%3Cieee_6IE%3E510262%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=510262&rfr_iscdi=true |