Transfer function and parameters identification of a motor drive system using adaptive filtering
A technique is developed for the identification of mechanical parameters in two-mass-model drive systems, The transfer function of the system model is calculated directly from the input-output signals. This technique involves repeated integration of the data and uses the recursive least squares meth...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 593 vol.2 |
---|---|
container_issue | |
container_start_page | 588 |
container_title | |
container_volume | 2 |
creator | Dhaouadi, R. Kubo, K. |
description | A technique is developed for the identification of mechanical parameters in two-mass-model drive systems, The transfer function of the system model is calculated directly from the input-output signals. This technique involves repeated integration of the data and uses the recursive least squares method. It is shown that when the system is subject to random noises and disturbances, the ordinary least squares method is asymptotically biased, and so an iterative scheme is proposed to remove this bias and to improve the estimation efficiency. Simulation analysis is made using the data of an actual rolling mill plant. The accuracy of the estimated mechanical parameters and the effect of measurement and disturbance noise are analyzed. The developed algorithm exhibits outstanding numerical characteristics and has proven to be very effective for the mechanical parameters identification. |
doi_str_mv | 10.1109/AMC.1996.509314 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_509314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>509314</ieee_id><sourcerecordid>509314</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-9c3f28be5348ddc340bc458d579ae1bc0f2210efa1c3c7c1900b0c325fccbd383</originalsourceid><addsrcrecordid>eNotUM1KxDAYDIigrD0LnvICrUm-xDbHpfgHK17W85omXySyTUuSFfbtre4OAwMzzByGkFvOGs6Zvl-_9Q3X-qFRTAOXF6TSbccWAgiu1RWpcv5mC6RSIOCafG6Tidljov4QbQlTpCY6OptkRiyYMg0OYwk-WPOfTp4aOk5lStSl8IM0H3PBkR5yiF_UODOXP9eH_dJerBty6c0-Y3XWFfl4etz2L_Xm_fm1X2_qwJkstbbgRTegAtk5Z0GywUrVOdVqg3ywzAvBGXrDLdjWcs3YwCwI5a0dHHSwInen3YCIuzmF0aTj7nQD_ALb51Tq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Transfer function and parameters identification of a motor drive system using adaptive filtering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dhaouadi, R. ; Kubo, K.</creator><creatorcontrib>Dhaouadi, R. ; Kubo, K.</creatorcontrib><description>A technique is developed for the identification of mechanical parameters in two-mass-model drive systems, The transfer function of the system model is calculated directly from the input-output signals. This technique involves repeated integration of the data and uses the recursive least squares method. It is shown that when the system is subject to random noises and disturbances, the ordinary least squares method is asymptotically biased, and so an iterative scheme is proposed to remove this bias and to improve the estimation efficiency. Simulation analysis is made using the data of an actual rolling mill plant. The accuracy of the estimated mechanical parameters and the effect of measurement and disturbance noise are analyzed. The developed algorithm exhibits outstanding numerical characteristics and has proven to be very effective for the mechanical parameters identification.</description><identifier>ISBN: 9780780332195</identifier><identifier>ISBN: 0780332199</identifier><identifier>DOI: 10.1109/AMC.1996.509314</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Iterative methods ; Least squares methods ; Mechanical variables measurement ; Milling machines ; Motor drives ; Noise measurement ; Parameter estimation ; Signal processing ; Transfer functions</subject><ispartof>Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE, 1996, Vol.2, p.588-593 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/509314$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/509314$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dhaouadi, R.</creatorcontrib><creatorcontrib>Kubo, K.</creatorcontrib><title>Transfer function and parameters identification of a motor drive system using adaptive filtering</title><title>Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE</title><addtitle>AMC</addtitle><description>A technique is developed for the identification of mechanical parameters in two-mass-model drive systems, The transfer function of the system model is calculated directly from the input-output signals. This technique involves repeated integration of the data and uses the recursive least squares method. It is shown that when the system is subject to random noises and disturbances, the ordinary least squares method is asymptotically biased, and so an iterative scheme is proposed to remove this bias and to improve the estimation efficiency. Simulation analysis is made using the data of an actual rolling mill plant. The accuracy of the estimated mechanical parameters and the effect of measurement and disturbance noise are analyzed. The developed algorithm exhibits outstanding numerical characteristics and has proven to be very effective for the mechanical parameters identification.</description><subject>Analytical models</subject><subject>Iterative methods</subject><subject>Least squares methods</subject><subject>Mechanical variables measurement</subject><subject>Milling machines</subject><subject>Motor drives</subject><subject>Noise measurement</subject><subject>Parameter estimation</subject><subject>Signal processing</subject><subject>Transfer functions</subject><isbn>9780780332195</isbn><isbn>0780332199</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUM1KxDAYDIigrD0LnvICrUm-xDbHpfgHK17W85omXySyTUuSFfbtre4OAwMzzByGkFvOGs6Zvl-_9Q3X-qFRTAOXF6TSbccWAgiu1RWpcv5mC6RSIOCafG6Tidljov4QbQlTpCY6OptkRiyYMg0OYwk-WPOfTp4aOk5lStSl8IM0H3PBkR5yiF_UODOXP9eH_dJerBty6c0-Y3XWFfl4etz2L_Xm_fm1X2_qwJkstbbgRTegAtk5Z0GywUrVOdVqg3ywzAvBGXrDLdjWcs3YwCwI5a0dHHSwInen3YCIuzmF0aTj7nQD_ALb51Tq</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Dhaouadi, R.</creator><creator>Kubo, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Transfer function and parameters identification of a motor drive system using adaptive filtering</title><author>Dhaouadi, R. ; Kubo, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-9c3f28be5348ddc340bc458d579ae1bc0f2210efa1c3c7c1900b0c325fccbd383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Analytical models</topic><topic>Iterative methods</topic><topic>Least squares methods</topic><topic>Mechanical variables measurement</topic><topic>Milling machines</topic><topic>Motor drives</topic><topic>Noise measurement</topic><topic>Parameter estimation</topic><topic>Signal processing</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Dhaouadi, R.</creatorcontrib><creatorcontrib>Kubo, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dhaouadi, R.</au><au>Kubo, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Transfer function and parameters identification of a motor drive system using adaptive filtering</atitle><btitle>Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE</btitle><stitle>AMC</stitle><date>1996</date><risdate>1996</risdate><volume>2</volume><spage>588</spage><epage>593 vol.2</epage><pages>588-593 vol.2</pages><isbn>9780780332195</isbn><isbn>0780332199</isbn><abstract>A technique is developed for the identification of mechanical parameters in two-mass-model drive systems, The transfer function of the system model is calculated directly from the input-output signals. This technique involves repeated integration of the data and uses the recursive least squares method. It is shown that when the system is subject to random noises and disturbances, the ordinary least squares method is asymptotically biased, and so an iterative scheme is proposed to remove this bias and to improve the estimation efficiency. Simulation analysis is made using the data of an actual rolling mill plant. The accuracy of the estimated mechanical parameters and the effect of measurement and disturbance noise are analyzed. The developed algorithm exhibits outstanding numerical characteristics and has proven to be very effective for the mechanical parameters identification.</abstract><pub>IEEE</pub><doi>10.1109/AMC.1996.509314</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780332195 |
ispartof | Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE, 1996, Vol.2, p.588-593 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_509314 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Iterative methods Least squares methods Mechanical variables measurement Milling machines Motor drives Noise measurement Parameter estimation Signal processing Transfer functions |
title | Transfer function and parameters identification of a motor drive system using adaptive filtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Transfer%20function%20and%20parameters%20identification%20of%20a%20motor%20drive%20system%20using%20adaptive%20filtering&rft.btitle=Proceedings%20of%204th%20IEEE%20International%20Workshop%20on%20Advanced%20Motion%20Control%20-%20AMC%20'96%20-%20MIE&rft.au=Dhaouadi,%20R.&rft.date=1996&rft.volume=2&rft.spage=588&rft.epage=593%20vol.2&rft.pages=588-593%20vol.2&rft.isbn=9780780332195&rft.isbn_list=0780332199&rft_id=info:doi/10.1109/AMC.1996.509314&rft_dat=%3Cieee_6IE%3E509314%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=509314&rfr_iscdi=true |